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1 Prediction of Fatty Acid Composition and Milk Fat Globule
Size of Bovine Milk Samples Using Mid-Infrared Spectroscopy

1.1 Abstract

The purpose of this study was to use mid-infrared (MIR) spectroscopy on bovine milk samples to develop
prediction equations to predict fatty acid composition as well as milk fat globule size. Traditional methods of
fatty acid determination and MFG measurement are expensive and slow relative to MIR spectroscopy, which
is already being used regularly in milk sample recording. This paper is based off of the methods implemented
in Fleming et al. (2017a,b), but looks to improve upon the predictive ability of the models developed in
that study. Fleming et al. (2017a,b) used partial least squares regression (PLSR) to develop prediction
equations for 22 individual fatty acids, 7 fatty acid groups, and 2 milk fat globule measurements. In this
study, PLSR was performed on the same fatty acids, fatty acid groups, and milk fat globule sizes, but two
different regression methods were also tested: the least absolute shrinkage and selection operator (LASSO)
and competitive adaptive reweighted sampling-partial least squares regression (CARS-PLSR). The regression
methods were tested on fatty acids expressed as g/100g of fatty acid, g/100g of milk, In (g/100g of milk + 1),
and on randomized subsets of the natural logarithmic transformed dataset by removing excess samples with
similar composition. Fatty acid determination was completed on 2,064 milk samples with recorded spectra by
gas chromatography, and milk fat globule measurements were completed on 2,083 milk samples with recorded
spectra by integrated light scattering techniques. The coefficient of determination of cross-validation (R2,)
was used to determine the predictive ability of each model. PLSR models developed in this study produced
comparable R? values to those obtained by Fleming et al. (2017a,b). LASSO regression models typically
offered very small improvements in predictive ability while only using a subset of the full set of 862 variables
(wavelengths) considered. CARS-PLSR produced the highest R, values for all tests compared to PLSR and
the LASSO. When compared to PLSR, CARS-PLSR offered an average of 14% increase in R?2, while only
using an average of about 12% of the full set of 862 wavelengths used in PLSR.

1.2 Introduction

Determination of the fat composition of milk has become an important field of study because of the influence
fat composition can have on the nutritious and technological properties of the milk, and because fat compo-
sition of milk samples can often serve as an indicator of bovine health. Mid-infrared (MIR) spectroscopy is
already used regularly to determine total fat and protein contents of milk samples with enough accuracy to
use for genetic selection and payment purposes (Ferrand-Calmels et al., 2013). However, it is also useful to
know individual fatty composition and milk fat globule (MFQG) size of milk samples. MFGs make up 95% of
total milk fat by weight (W. Keenan and Mather, 2006), and over 400 fatty acids are present in bovine milk
with 12 fatty acids being present in concentrations greater than 1% (Jensen, 2002).

The membrane of MFGs are rich in valuable lipids and glycoproteins, and milk samples with smaller
MFGs contain more membrane material per unit of fat compared to large MFGs (Fleming et al., 2017b).
Fatty acid composition plays a large role in determining the nutritious quality of milk, so it is important
to be able to accurately and efficiently determine the fatty acid composition of milk to produce the most
desirable product for consumers (Ferrand-Calmels et al., 2013). Both MFG size and fatty acid composition
influence the technological properties of milk, which is important to determine which products can be made
from a particular milk sample, such as whether it is to be for consumption in liquid form or made into
a cheese, for example (Fleming et al., 2017a,b). Furthermore, changes in milk fatty acids can serve as an
indicator of bovine health and energy balance (Fleming et al., 2017a). For these reasons, it is important that
dairy producers have an effective and efficient method to determine fatty acid composition and MFG size of
their milk samples.

Traditional methods of fatty acid determination and MFG size measurement are both slow and expensive
relative to MIR spectroscopy (Fleming et al., 2017a,b). MIR spectroscopy technology used to measure
the absorption spectra of milk samples is already implemented and in use, so it would be ideal if fatty
acid composition and MFG size could be determined using MIR spectroscopy rather than slower and more
expensive methods. This paper aims to predict fatty acid composition and MFG size of milk samples using



MIR spectroscopy.

The methods used in this paper are based on the studies performed by by Fleming et al. (2017a,b), but
other regression methods are tested as well to try and improve prediction. Fleming et al. used partial least
squares resgression (PLSR) to develop a prediction model for the fatty acid composition and MFG size of the
milk samples. PLSR is a common regression method to use when working with spectroscopy data or data
with a high number of highly correlated variables, but it has been predicted that wavelength selection prior
to performing PLSR could improve regression models (Ferrand-Calmels et al., 2013). This paper compares
two sparse regression methods which perform variable subset selection: the least absolute shrinkage and
selection operator (LASSO), and competitive adaptive reweighted sampling-partial least squares regression
(CARS-PLSR) to see if they yield any improvements in predictive ability relative to PLSR.

1.3 Statistical Theory

The following section provides a brief overview of the statistical theory behind the regression methods tested
in this paper. All of the regression methods can be understood in terms of the classical linear model given
by:

y=XB+e (1)
Where:
y is a n x 1 response vector given by
Y1
Y2
y=1.
Yn

X is an n x (p+ 1) matrix of spectroscopy data, with the first column being all ones, and subsequent
columns representing each of the p explanatory variables (wavelengths). Let 1 be a column wise vector
consisting of n entries of 1. Then,
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Ordinary Least Squares (OLS)
Theory behind ordinary least squares (OLS) is adapted from Hastie et al. (2009).

OLS is a simple regression method that is not tested in this study, but is useful to know to understand
the other regression methods tested. The idea behind OLS is to pick 3 to minimize the residual sum of
squares (RSS). i.e., minimize the Euclidean distance between the observed versus fitted vector:

B=argﬂmin|\y—XB||2- (2)
Equivalently,

n P
B= arg;nin Z(Z/z —Bo— injﬂj)Q . (3)
=1

i=1

The three other regression methods following typically offer better predictive power compared to OLS
while also providing some form of model simplification, which OLS does not perform.

Partial Least Squares Regression (PLSR)
Theory behind PLSR is adapted from Hastie et al. (2009).

Spectroscopy data involves a high number of variables of which many are highly correlated. To help
mitigate this issue, one strategy is to use PLSR. PLSR creates a small number of linear combinations of the
original variables which can be viewed as orthogonal direction vectors in the p-dimensional input space. These
direction vectors which will be referred to as “components” look for the directions that have high correlation
with the response and for which the input matrix X displays high variance. The first component can be seen
as the most informative component as it is the component which best satisfies the aforementioned conditions
of displaying high variance and being highly correlated with the response. All subsequent components satisfy
the conditions to a lesser degree than the previous and can be seen as less informative than the previous.

PLSR first computes

¢1j:2<mj7y> fOI‘j:l,Q,...,p (4)
J

which it uses to calculate the first PLS component z1, given by

zZ1 :Z@ljmj forj:1,2,...,p. (5)
J

The response variable y is then regressed on z; to obtain coefficient 0;. T1,T2,..., T, are then orthogonalized
with respect to z1. This process is repeated m < p times to obtain m orthogonal components z1, 2o, ..., Zm.
The response vector y is then regressed on z1, 2o, . .., Zy, to obtain the partial least squares model given by

m
g=gl+ ) Oizp, (6)

i=1

where 7 is the mean of y.

PLSR offers many advantages when compared to the OLS method. PLS often offers greater prediction
power, greater stability in the presence of highly correlated variables, and can produce useful equations even
when the number of explanatory variables used is greater than the number of samples used for calibration



(n < p) (Cramer, 1993). In this study, we are interested in achieving good predictions using spectroscopy
data which often contains many highly correlated variables, so PLSR is preferred over OLS.

However, while PLSR typically works well for spectroscopy data, it is not necessarily the best method.
PLSR can be sensitive to a low signal to noise ratio (Cramer, 1993). When there are a high number of
explanatory variables of which many of them have low correlations to the response variable, PLSR is known
to fail at identifying which variables have good correlations with the response (Cramer, 1993). As previously
mentioned, PLSR does not perform any variable selection, meaning that in the case of spectroscopy data,
wavelengths that may provide no useful information, noise, or non-linearity are all factored into the model
(Frenich et al., 1995).

One way to solve the issue of uninformative/noisy variables being included in the model is to use a sparse
regression method to only keep the most useful variables in the final model. This study aims to improve
prediction of fatty acid composition in milk by testing regression methods which perform variable subset
selection on the data. The LASSO and CARS-PLSR both perform variable subset selection and are tested
in this study.

Least Absolute Shrinkage and Selection Operator (LASSO)
Theory behind the LASSO is adapted from Hastie et al. (2009).

When working with spectroscopy data with high numbers of correlated variables, a very large positive
coefficient on a variable could be cancelled by a very large negative coefficient on one of the variables it is
correlated to. This is often the case when using OLS. The LASSO can be viewed as a modified version of
OLS which penalizes extremely positive or negative coefficients in the model. The idea behind the LASSO
is to shrink the coefficients by introducing an l; penalty on the beta coefficients (excluding the intercept
Bo). This will introduce bias in all the non-zero coefficients but will reduce their variance, which can lead to
decreased error so long as the optimal value of the tuning parameter X is chosen. Shrinkage methods such as
the LASSO help to mitigate the issue of wildly large positive coefficients being cancelled by corresponding
large negative coefficients. Since the LASSO constraint function is convex, the algorithm is able to zero out
variables to simultaneously perform variable subset selection. The beta coeflicients in LASSO regression are
estimated by

n p p
6=arggnin D i Bo—Y @B +AY 1Bl ¢ (7)
=1 J=1

i=1

where A > 0 is a tuning parameter which controls the amount of shrinkage the LASSO performs. The
coeflicients obtained are then used in the classical linear model to obtain our final regression model.

Competitive Adaptive Reweighted Sampling - Partial Least Squares Regression (CARS-PLSR)
Theory behind CARS-PLSR is adapted from Li et al. (2009).

CARS-PLSR is a regression method which uses competitive adaptive reweighted sampling to perform
variable subset selection, and then performs PLSR on the data using only the selected variables. CARS-
PLSR works by creating s subsets of variables in s CARS sampling runs which are compared to see which
subset performs the best.

First, a PLSR model is fit to the data and the values of the PLSR coefficients Bi, 1 =1,2,...,p are
calculated. Next, the weights for each coefficient are calculated as

wi:% fori=1,2,...,p. (8)
> i1 |Bil
For each CARS sampling run, variable elimination is performed in 2 steps. In the first step, the ratio of
variables to be retained is calculated using an exponentially decreasing function, given by



where:

In (%)

k= .
s—1

Recall: s is the number of CARS sampling runs to be performed.

The ratio r; calculated is used to determine the number of variables to retain in the first step of variable
selection. The variables with the largest weights are retained while the rest are dropped.

In the second step of variable selection, adaptive reweighted sampling is used to further eliminate vari-
ables. Monte Carlo sampling runs are performed where the remaining variables are sampled with replace-
ment, with each variables weight w; determining its probability of being sampled. At the end of this step,
variables that have not been sampled are eliminated and the final subset of variables is obtained for that
CARS sampling run.

A PLSR model is then fit to the data using only the selected variables for the particular CARS sampling
run and the root mean squared error of cross-validation (RMSECYV) of that model is calculated and stored.
This process is repeated in s CARS sampling runs to obtain s subsets of variables. Note that for each CARS
sampling run, the value of 7 increases, causing the ratio of variables to retain in the first step of subset
selection to become smaller. The subset of variables corresponding to the lowest RMSECYV is chosen and
used for the final PLS model obtained in CARS-PLSR.

Coefficient of Determination of Cross-Validation (R2,)

The coefficient of determination of cross-validation, R?,, was used to evaluate the predictive ability of the

models created in the study. High R2, values (values close to 1) are considered an indicator of high predictive
ability (Shen et al., 2016). In this study, we are interested in achieving R2, above 2 certain thresholds:
Soyeurt et al. (2011) proposed that regression models that achieve R2, > 0.95 could be used for milk
payment systems, while R?, > 0.75 could be useful for genetic selection/breeding purposes. Furthermore,
other studies have demonstrated that even with low R2, values, high genetic correlation between observed
and predicted values could be used to effectively improve milk coagulation properties (Cecchinato et al.,
2009).

R?, is calculated as

SSECV
R =1-=—" 12
v 55, (12)

where:

SSECV =Y (i — :)°,
=1

SSiot = Z(yz - ﬂ)2,

i=1

y; are the predicted values obtained for each observation in cross-validation, and 7 is the mean of all the
observed values of y.



1.4 Data

For a full description on how the data used in this study was obtained for the fatty acid and MFG data,
refer to Fleming et al. (2017a,b). The following sections provide a brief overview of the datasets and how
they were obtained and edited.

Fatty Acid Data

CanWest DHI (Guelph, ON, Canada) and Valacta (Ste-Anne-de-Bellevue, QC, Canada) collected milk sam-
ples during routine recordings between March 2013 and October 2014 for CanWest DHI, and between Decem-
ber 2013 and May 2015 for Valacta. Milk sampling took place at a total 44 herds, sampling approximately
10 cows per herd, with roughly half in mid lactation and half at the beginning of lactation. Ayrshire, Brown
Swiss, Holstein, and Jersey cows from Alberta, Ontario, and Quebec were all included in the sampling. Many
cows were sampled multiple times during a lactation or during subsequent lactations. A portion of each milk
sample was removed and ran through a spectrometer as per usual recordings, which recorded the absorption
of each samples at 1060 data points in the MIR region from 5010-926 cm™'. The rest of each milk sample
was taken to the University of Guelph to measure its fatty acid concentration using gas chromatography.
Fatty acid determination was completed on 2,064 milk samples from 374 cows.

Data preprocessing was performed to best recreate the steps done in Fleming et al. (2017a). Regions from
3105-3444 cm~! as well as 1628-1658 cm~! in the MIR spectra exhibited high noise due to the absorption of
water and were therefore left out of the analysis. 862 wavelengths in the MIR region were left after removal.
Individual fatty acid observations expressed in g/100 g of fat greater than or equal to 5 standard deviations
away from the mean were considered outliers and removed. The entire record was removed if any of the
fatty acid measurements in the record were considered outliers. Fatty acid measurements expressed in g/100
g of fat comprised the “Fat” dataset. The observations expressed in g/100 g of fat were multiplied by the
fat percentage measurement of the milk sample to obtain fatty acid measurements expressed in g/100 g of
milk. These observations comprised the “Milk” dataset. Fatty acids expressed in the Milk dataset showed
more variation than those in the Fat dataset due to differences in the fat content of each of the milk samples.
Fatty acid data was skewed for many of the fatty acids when expressed in g/100 g of milk. To try and make
these distributions more Gaussian, the natural logarithm of the fatty acid measurements expressed in g/100
g of milk was taken after adding 1 to all of the observations to ensure that observations of 0 would not be
undefined. These transformed observations comprised the “Ln” dataset. As per Fleming et al. (2017a),
a random sampling procedure performed on the Ln dataset was implemented to obtain a subset of the Ln
calibration set with a more uniform distribution of the response. These observations comprised the “Subset
(Ln)” dataset. More information on the sampling procedure is given under the Methods section.

After data processing, there were 2015 observations in the Fat dataset, and 1903 observations in the Milk
and Ln datasets. The spectra of all 2015 observations in the Fat dataset with noisy regions removed is shown
in Figure 1.

Fatty acid analysis was performed on 22 individual fatty acids and 7 fatty acid groups. Fatty acid groups
included saturated (SFA), unsaturated (UFA), monounsaturated (MUFA), polyunsaturated (PUFA), long-
chain (LC), medium-chain (MC), and short chain (SC). Fatty acids with 4-10 carbon atoms were considered
short-chain, 11-16 carbons were considered medium-chain, and 17-22 carbons were considered long-chain.
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Figure 1: The absorption spectra of the 2015 samples used for fatty acid prediction model development in
the study.

Milk Fat Globule Data

The same milk samples were used to create the MFG dataset as for the fatty acid dataset. The absorption
spectra of each sample was recorded at 1060 wavelengths in the MIR region from 5010-926 cm™!. A portion
of each sample was taken to the University of Guelph to measure the mean MFG size by integrated light
scattering for each record. Mean MFG diameter was measured as the volume moment mean (D[4,3]) and
surface moment mean (D[3,2]), defined as:

YNy

Dk, z] = SN

(13)

where N; is the number of globules in a size class of d;.

MFG measurement was completed on 2,083 samples from 392 cows. Data preprocessing was performed
to best recreate the steps done in Fleming et al. (2017b). Regions from 3105-3444 cm ™! as well as 1628-1658
cm ™! in the MIR spectra exhibited high noise due to the absorption of water and were therefore left out of
the analysis. 862 wavelengths in the MIR region were left after removal. One record was removed because
its D[3,2] measurement was greater than its D[4,3] measurement, and it was assumed to be a recording
error. Records which had D[4,3] or D[3,2] measurements greater than 4 standard deviations away from their
respective means were removed. After record removal, there were 2070 records with MFG measurements
recorded.

1.5 Analysis Per Fleming et al. (2017a,b)

Fleming et al. (2017a,b) performed PLSR on 22 individual fatty acids, 7 fatty acid groups, and 2 MFG
measurements. Each fatty acid/fatty acid group involved 4 separate regressions: one for each of the Fat,
Milk, Ln, and Subset (Ln) datasets. For predicting MFG size using PLSR, Fleming et al. (2017b) achieved
R?, values of 0.51 and 0.54 for D[4,3] and D[3,2], respectively. Results for fatty acid predictions are given in
Table 1.



R2

Ccv

Fatty Acid Fat Milk Ln  Subset (Ln)
C4:0 0.32 0.66 0.66 0.73
C6:0 0.18 0.38 0.37 0.46
C8:0 0.21 037 0.39 0.40
C10:0 0.52 0.66 0.67 0.75
C11:0 0.13 0.21 0.20 0.20
C12:0 0.61 0.71 0.72 0.76
C13:0 0.14 0.19 0.36 0.14
C14:0 0.60 0.80 0.80 0.85
C14:1 0.48 0.61 0.61 0.68
C15:0 0.42 0.61 0.61 0.67
C16:0 0.64 0.86 0.86 0.91
C16:1 0.39 0.62 0.63 0.66
C17:0 0.17 0.53 0.52 0.58
C17:1 0.14 031 0.30 0.43
C18:0 0.58 0.73 0.73 0.80
C18:1n-9 trans 0.55 0.60 0.61 0.63
C18:1n-9 cis 0.69 0.79 0.78 0.83
C18:2n-6 trans 0.14 0.17 0.14 0.13
C18:2n-6 cis 0.58 0.62 0.62 0.68
C18:3n-3 0.53 0.58 0.58 0.61
C18:2 cis-9, cis-12 0.62 0.65 0.65 0.72
(C22:6n-3 0.16 0.22 0.21 0.16

Fatty Acid Group

SFA 0.76 094 0.93 0.96
MUFA 0.75 0.84 0.83 0.88
PUFA 0.55 0.66 0.65 0.72
UFA 0.75 0.84 0.83 0.87
Short-chain 0.42 0.72 0.73 0.78
Medium-chain 0.72 090 0.89 0.92
Long-chain 0.72 083 0.81 0.85

Table 1: Results of PLSR performed by Fleming et al. (2017a). Bolded values represent the highest RZ,
value for that particular fatty acid or fatty acid group.

1.6 Methods

For all 22 fatty acids, 7 fatty acid groups, and 2 MFG measurements, PLSR, the LASSO, and CARS-PLSR
were performed. PLSR was included in this study to ensure that results were comparable to those achieved
by Fleming et al. (2017a,b). LASSO and CARS-PLSR were tested to compare predictive ability and try to
identify important spectral regions for prediction, since they also perform variable subset selection.

To create the Subset (Ln) datasets, steps were performed to best recreate what was implemented in
Fleming et al. (2017a). According to Williams and Norris (2001), it is ideal to limit the calibration set to
have roughly the same number of samples at uniform intervals of the response variable to create a more
uniform distribution of the data. Calibrations made with data having a Gaussian distribution may cause
future predictions to regress towards the mean of the calibration set. This is known as the ”Dunne effect”
(Dunne and Anderson, 1976). For calibration sets with Gaussian distribution, Williams and Norris (2001)
suggest partitioning the data into 10 equally spaced bins which span the range of the data, and taking a
uniform number of random samples from each of the bins to obtain a subset of the observations which are
more uniformly distributed. For 10 bins, Williams and Norris (2001) suggests taking a maximum number of
samples from each bin equal to 10% of the total sample size.



In this study, a similar strategy was implemented to try and obtain a more uniformly distributed cali-
bration set. Fatty acid data in the Ln dataset was partitioned into 100 equally sized bins which spanned
the range of the particular fatty acid or fatty acid group being analysed. A maximum of 18 observations
(roughly 1% of the Ln dataset) were sampled uniformly at random from each bin without replacement to be
included in the calibration set. If a particular bin had 18 or fewer samples, all of the samples from that bin
were included. Outlier removal followed by PLSR, the LASSO, or CARS-PLSR were then performed on the
resulting datasets. This process of creating a subset of the data, removing outliers, and then performing one
of the regression methods was repeated 10 times for each dataset. The R?, value and number of nonzero
coefficients were taken as the mean of all the runs. The number of nonzero coefficients were rounded to
the nearest whole number in this report. Identical seeds were set for every run so that the 10 Subset (Ln)
calibration sets were the same for all 3 regression methods being compared. Across all of the fatty acids and
fatty acid groups, there were on average 65.7 bins out of the 100 bins which included 18 or fewer samples.
Therefore, all of the samples in these bins were always included in the 10 different randomized subsets used
for calibration.

Outlier removal was implemented prior to performing the regression to best recreate what was done
in Fleming et al. (2017a,b) for the fatty acid and MFG datasets. A PLSR model was fit to the data
using 30 components and the root mean squared error (RMSE) of the fitted values were calculated for
each observation. Observations with RMSE further than 3 standard deviations away from the mean were
considered outliers and the corresponding record was removed from the calibration set. PLSR, LASSO, and
CARS-PLSR models were then fit to the data and the results were recorded.

PLSR models were fit with a maximum of 100 components, and the number of components corresponding
to the minimum RMSECYV were included in the final PLSR model. Leave-one-out cross-validation was used
for the Fat, Milk, and Ln datasets while 10-fold cross validation was used for the Subset (Ln) datasets. All
LASSO models were fit using 10-fold cross-validation. The optimal A value for the LASSO models were
chosen as the value which minimized the RMSECV. All CARS-PLSR models were fit using 10-fold cross-
validation. 50 Monte Carlo sampling runs were performed, and a maximum of 50 components were used to
fit a PLSR model. The number of components achieving the lowest RMSECV was used for the final model.
CARS-PLSR was performed 25 times for the Fat, Milk, and Ln datasets, and 10 times for the Subset dataset
- 1 run for each of the 10 subsets created. All results were averaged.

Packages and Software

PLSR models were fit using the plsregress function in MATLAB R2019a (The MathWorks, Inc., 2019). All
LASSO models were fit using the cvglmnet function of the glmnet package (Qian et al., 2013) in MATLAB
R2019a. CARS-PLSR models were fit using the carspls function of the libPLS 1.98 package (Li et al., 2018)
in MATLAB R2019a.

1.7 Results
For all fatty acids, fatty acid groups, and MFG measurements, CARS-PLSR achieved the highest R2, values.

LASSO regression typically performed marginally better or the same as PLSR in terms of predictive ability.
On average, the optimal LASSO models selected included less than half of the 862 wavelengths in the dataset,
and CARS-PLSR typically included even fewer variables in the model in comparison to LASSO regression.
The results of fatty acid prediction are given in Table 2 and Table 3. Table 2 displays the results obtained
using the Fat and Milk datasets, and Table 3 displays the results obtained from the Ln and Subset (Ln)
datasets. Results of MFG prediction are given in Table 4. In all tests, CARS-PLSR achieves the greatest

R?, values compared to PLSR and the LASSO.
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R2, (Number of nonzero coefficients)

Fat Milk

Fatty Acid PLSR LASSO CARS-PLSR PLSR LASSO CARS-PLSR
C4:0 0.33 (862) 0.33 (248)  0.39 (102) 0.63 (862) 0.63 (330) 0.66 (100)
C6:0 0.19 (862) 0.21 (306) 0.28 (116) 0.39 (862) 0.41 (331) 0.46 (117)
C8:0 0.22 (862) 0.22 (178) 0.29 (98) 0.38 (862) 0.39 (221) 0.43 (94)
C10:0 0.56 (862) 0.58 (282) 0.62 (111) 0.70 (862) 0.71 (296) 0.75 (108)
C11:0 0.17 (862) 0.17 (126) 0.21 (86) 0.25 (862) 0.25 (164) 0.28 (96)
C12:0 0.66 (862) 0.68 (205) 0.72 (126) 0.76 (862) 0.78 (290) 0.81 (107)
C13:0 0.18 (862) 0.19 (178)  0.25 (109) 0.26 (862) 0.28 (221) 0.33 (97)
C14:0 0.64 (862) 0.65 (261) 0.69 (89) 0.82 (862) 0.83 (427)  0.84 (105)
C14:1 0.44 (862) 0.45 (362) 0.50 (115) 0.58 (862) 0.60 (375)  0.64 (109)
C15:0 0.44 (862) 0.45 (367)  0.49 (103) 0.63 (862) 0.64 (379) 0.67 (105)
C16:0 0.62 (862) 0.64 (437)  0.69 (122) 0.86 (862) 0.87 (444) 0.88 (136)
C16:1 0.31 (862) 0.34 (215)  0.41 (107) 0.59 (862) 0.60 (305) 0.65 (97)
C17:0 0.17 (862) 0.19 (227) 0.25 (93) 0.58 (862) 0.58 (296) 0.61 (86)
C17:1 0.21 (862) 0.22 (303) 0.28 (84) 0.38 (862)  0.40 (206) 0.45 (75)
C18:0 0.53 (862) 0.55 (456) 0.61 (105) 0.72 (862) 0.73 (416)  0.77 (111)
C18:1n-9 trans 0.57 (862) 0.58 (337) 0.62 (132) 0.60 (862) 0.62 (344) 0.66 (127)
C18:1n-9 cis 0.71 (862) 0.71 (387)  0.75 (115) 0.79 (862) 0.79 (383)  0.82 (106)
C18:2n-6 trans 0.13 (862) 0.14 (131) 0.21 (103) 0.20 (862) 0.21 (152) 0.29 (94)
C18:2n-6 cis 0.54 (862) 0.57 (354)  0.62 (110) 0.61 (862) 0.65 (356) 0.68 (114)
C18:3n-3 0.43 (862) 0.49 (350) 0.56 (106) 0.48 (862) 0.53 (237)  0.60 (106)
C18:2 cis-9, cis-12 0.59 (862) 0.60 (482) 0.64 (114) 0.63 (862) 0.63 (373)  0.67 (117)
C22:6n-3 0.21 (862) 0.21 (119) 0.30 (81) 0.23 (862) 0.25 (242) 0.34 (92)
Fatty Acid Group

SFA 0.80 (862) 0.80 (382)  0.82 (127) 0.94 (862) 0.94 (423)  0.95 (122)
MUFA 0.76 (862) 0.76 (329) 0.80 (118) 0.84 (862) 0.84 (364) 0.87 (114)
PUFA 0.55 (862) 0.58 (375) 0.62 (95) 0.66 (862) 0.67 (301) 0.71 (120)
UFA 0.79 (862) 0.79 (439) 0.81 (119) 0.85 (862) 0.86 (507) 0.88 (119)
Short-Chain 0.38 (862) 0.40 (318)  0.47 (122) 0.69 (862) 0.70 (261)  0.74 (110)
Medium-Chain 0.75 (862) 0.75 (506)  0.78 (129) 0.91 (862) 0.90 (491) 0.92 (129)
Long-Chain 0.76 (862) 0.76 (539)  0.79 (129) 0.86 (862) 0.86 (542)  0.88 (136)

Table 2: Table of results from PLS, LASSO, and CARS-PLS regression for the Fat and Milk calibration sets.
Bolded values represent the highest R?, value between the 3 regression methods tested for each dataset of
each fatty acid/ fatty acid group.
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R2, (Number of nonzero coefficients)

Ln Subset (Ln)

Fatty Acid PLSR LASSO CARS-PLSR PLSR LASSO CARS-PLSR
C4:0 0.62 (862) 0.62 (302) 0.65 (109) 0.70 (862) 0.71 (251) 0.75 (92)

C6:0 0.38 (862) 0.39 (385)  0.44 (113) 0.46 (862)  0.44 (33) 0.53 (74)

C8:0 0.40 (862) 0.41 (251) 0.46 (104) 0.44 (862) 0.45 (143) 0.52 (82)

C10:0 0.72 (862) 0.72 (348)  0.76 (113) 0.77 (862)  0.72 (24) 0.82 (77)

C11:0 0.27 (862) 0.28 (129) 0.31 (79) 0.34 (862) 0.35 (118) 0.41 (79)

C12:0 0.78 (862) 0.79 (278)  0.82 (110) 0.84 (862)  0.78 (23) 0.87 (74)

C13:0 0.26 (862) 0.28 (197)  0.33 (103) 0.31 (862)  0.31 (40) 0.40 (73)

C14:0 0.81 (862) 0.82 (353) 0.84 (92) 0.84 (862) 0.85 (409) 0.88 (85)

Cl14:1 0.59 (862) 0.60 (372) 0.64 (104) 0.67 (862)  0.64 (29) 0.72 (94)

C15:0 0.65 (862) 0.66 (431) 0.69 (93) 0.71 (862) 0.73 (288) 0.78 (86)

C16:0 0.85 (862) 0.86 (447)  0.87 (123) 0.88 (862) 0.89 (370) 0.91 (97)

C16:1 0.59 (862) 0.60 (266) 0.64 (116) 0.62 (862) 0.65 (280)  0.71 (104)
C17:0 0.58 (862) 0.59 (320) 0.61 (90) 0.66 (862) 0.63 (21) 0.71 (83)

C17:1 0.29 (862) 0.31 (277) 0.36 (75) 0.56 (862)  0.54 (30) 0.66 (79)

C18:0 0.67 (862) 0.69 (403) 0.74 (97) 0.71 (862) 0.74 (297) 0.79 (68)

C18:1n-9 trans 0.60 (862) 0.62 (388) 0.65 (131) 0.64 (862) 0.67 (282) 0.72 (106)
C18:1n-9 cis 0.74 (862) 0.74 (356) 0.78 (94) 0.81 (862)  0.77 (22) 0.86 (87)

C18:2n-6 trans 0.17 (862) 0.19 (147) 0.26 (86) 0.34 (862)  0.36 (53) 0.47 (84)

C18:2n-6 cis 0.59 (862) 0.62 (362) 0.66 (121) 0.70 (862)  0.61 (31) 0.77 (74)

C18:3n-3 0.51 (862) 0.56 (227)  0.63 (101) 0.59 (862) 0.62 (222) 0.69 (105)
C18:2 cis-9, cis-12 0.63 (862) 0.63 (507) 0.67 (123) 0.69 (862) 0.70 (249) 0.75 (93)

C22:6n-3 0.26 (862) 0.27 (284) 0.36 (104) 0.20 (862)  0.20 (45) 0.39 (76)

Fatty Acid Group

SFA 0.94 (862) 0.94 (436) 0.95 (129) 0.95 (862) 0.95 (259) 0.96 (95)

MUFA 0.81 (862) 0.81 (292) 0.84 (102) 0.86 (862)  0.80 (19) 0.89 (86)

PUFA 0.65 (862) 0.66 (349) 0.70 (110) 0.70 (862) 0.72 (282) 0.76 (83)

UFA 0.83 (862) 0.83 (331) 0.85 (109) 0.86 (862)  0.79 (19) 0.90 (84)

Short-Chain 0.71 (862) 0.72 (383)  0.75 (109) 0.77 (862)  0.74 (22) 0.82 (93)

Medium-Chain 0.90 (862) 0.90 (422) 0.91 (117) 0.92 (862) 0.92 (415) 0.93 (98)

Long-Chain 0.82 (862) 0.83 (568) 0.85 (114) 0.84 (862)  0.79 (20) 0.88 (88)

Table 3: Table of results from PLS, LASSO, and CARS-PLS regression methods for the Ln and Subset (Ln)
datasets. Bolded values represent the highest R2, value between the 3 regression methods tested for each
dataset of each fatty acid/ fatty acid group.

R2, (Number of nonzero coefficients)

MFG Size PLSR LASSO CARS-PLSR
D[4,3] 0.51 (362) 0.52 (335) 0.57 (45)
D[3,2] 0.54 (862) 0.55 (193) 0.59 (41)

Table 4: Coefficient of determination (R2,) values obtained from PLS, LASSO, and CARS-PLS regression
methods on the MFG size data. Bolded values represent the highest R2, value between each of the 3
regression methods tested.

1.8 Discussion

As previously observed, PLSR does not perform variable selection and therefore included all 862 wave-
lengths/variables in the model, while LASSO regression typically eliminated more than half of the variables,
and CARS-PLSR typically eliminated even more variables than LASSO regression. We also observed that
LASSO regression typically outperformed PLSR, and CARS-PLSR outperformed both PLSR and LASSO re-
gression in all tests. CARS-PLSR achieved R?, values that were on average 14% higher than PLSR while only
using an average of about 12% of the full set of 862 variables/wavelengths. It is likely that of the 862 wave-
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lengths analysed, many of them exhibited noise and/or were uninformative for predictive purposes. It then
could be hypothesized that CARS-PLSR typically did a better job of eliminating those noisy /uninformative
variables from the model to improve prediction, and LASSO regression may not have eliminated enough of
the noisy /uninformative variables to achieve the same predictive power as CARS-PLSR.

Results obtained for PLSR are comparable but not exactly the same as that obtained by Fleming et al.
(2017a,b). Slight differences in the findings were expected, since Fleming et al. included a maximum of 30
components in the PLSR models, whereas this study included a maximum of 100 components. Furthermore,
this study selected the optimal number of components to include in the model as the number of components
that minimized the SSECV, whereas the analysis done by Fleming et al. selected the optimal number
of components by van der Voet’s randomization-based model comparison criteria (van der Voet, 1994).
Randomization procedures involved in 10-fold cross validation and sampling for creating the subset data
could also contribute to any discrepancies between the two analyses. It is also possible that more test day
information was found for the dataset used by Fleming et al. (2017a,b).

We must take into consideration that fatty acid determination was only measured above a certain limit
of detection (LOD). Because of this, many of the fatty acid datasets included observations below the LOD
and were therefore recorded as 0. Table 5 displays all of the fatty acids which had left-censored observations
in their calibration sets. It is possible that better models could be developed for fatty acids which typically
are present in concentrations close to or lower than the LOD by either implementing a method to properly
deal with left-censored observations, or by using equipment with a lower LOD to measure the fatty acid
concentrations.

Fatty Acid # of observations Highest R?,* Dataset
C6:0 3 0.46 Milk
C11:0 55 0.31 Ln
C13:0 413 0.33 Milk, Ln
C14:1 2 0.64 Milk, Ln
C17:1 281 0.45 Milk
C18:2n-6 trans 241 0.29 Milk
C18:3n-3 12 0.63 Ln
C18:2 cis-9, cis-12 6 0.67 Milk, Ln
(C22:6n-3 1595 0.36 Ln

Table 5: Table of the number of left censored observations in the calibration set for all fatty acids affected.
The highest R?, values for all fatty acids in the table were achieved using CARS-PLSR on their respective
dataset(s) listed in the table. *Note that the Subset (Ln) dataset was not considered for the highest R?,
value in this table as the process of creating the subsets often removed many if not all of the left-censored
observations.
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Absorption Spectra of Fatty Acids in Milk
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Figure 2: Plot of the regression coefficients for the CARS-PLS model on the Ln dataset for SFA and UFA
groups. The region highlighted in yellow represents the C=C absorption region (Stuart, 2015), and the region
highlighted in red represents the C—C absorption region (Naumann, 2001). Unsaturated fatty acids contain
C=C bonds and saturated fatty acids do not, which could help explain why the regression coefficients for
UFA in the C=C region are fewer, but larger in magnitude and less spread out in comparison to SFA.

1.9 Future Models to Consider

Three different regression methods were tested in this study: PLSR, the LASSO, and CARS-PLSR. It was
observed that CARS-PLSR offered the greatest prediction power out of the 3 methods tested, but there are
other regression methods not tested in this study that have potential to offer even greater predictive power.

Stability Competitive Adaptive Reweighted Sampling-Partial Least Squares Regression (SCARS-
PLSR)

Zheng et al. (2012) proposed a modification to the CARS-PLSR algorithm used in this study named
stability competitive adaptive reweighted sampling-partial least squares regression (SCARS-PLSR), which
has potential to improve upon the predictive ability of CARS-PLSR. The main difference between CARS-
PLSR and SCARS-PLSR is that variable selection in the SCARS algorithm is based on the index of stability
of each variable, rather than the absolute value of each variable. The index of stability in SCARS-PLSR
is defined as the absolute value of the regression coefficient divided by its standard deviation. SCARS-
PLSR showed to have better predictive ability in cross validation than CARS-PLSR for multiple tests using
spectroscopic data on organic samples to predict features of its composition (Zheng et al., 2012).

Sampling Error Profile Analysis-LASSO (SEPA-LASSO)

Another regression method to consider is sampling error profile analysis combined with the LASSO (SEPA-
LASSO), proposed by Zhang et al. (2018). The SEPA-LASSO uses many loops involving Monte Carlo
sampling and least angle regression to develop many LASSO sub-models of the same dimension. A vote rule
is then implemented to determine which of the variables are the most important, and that is used to create
different subsets of important variables. The algorithm then uses the error profile of each of the subsets of
variables obtained to determine which is the optimal subset (Zhang et al., 2018). In the analysis performed
by Zhang et al., SCARS was able to generate better predictions than PLSR, LASSO, and SCARS-PLSR
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(mentioned above) when working with spectroscopic data for the purpose of predicting composition of organic
materials.

Doubly Sparse Regularized Regression Incorporating Graphical Structure Among Predictors
(DSRIG)

Doubly sparse regularized regression incorporating graphical structure among predictors (DSRIG), proposed
by Stephenson (2018), is a regularized model that takes into account the undirected graph structure of
the predictor variables included in the calibration when creating the model. DSRIG recognizes the groups
created by the graph structure of the predictor variables and encourages sparsity both within and among the
predictor groups to create a sparse regression model (Stephenson, 2018). This regression method is highly
flexible and creates sparse models which have been shown to have better predictive performance compared
to OLS and the LASSO (Stephenson, 2018).

Convolutional Neural Networks

The deep learning algorithms known as convolutional neural networks have also been applied to spectroscopy
data and have shown to be effective for predictive purposes. One study compared convolutional neural net-
works to PLSR in the prediction of soil properties from raw soil spectra and found that convolutional neural
networks decreased error by 87% when compared to PLSR (Padarian et al., 2019). However, convolutional
neural networks are data-hungry algorithms and would likely require many more samples than what was used
in this study in order to offer significant improvements in predictive performance (Padarian et al. (2019)
used roughly 20,000 samples in their analysis). In the future, if absorption spectra and fatty acid composi-
tion/MFG size are obtained for many more samples, convolutional neural networks could potentially offer
significant improvements in prediction power compared to those tested in this paper.
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2 Heritability Estimation of Mid-Infrared Predicted Bovine Milk
Sample Composition

2.1 Abstract

The purpose of this study was to estimate the heritability of 5 fatty acid group concentrations and 2 MFG
size measurements in bovine milk samples. This study is based on the methods performed by Fleming et al.
(2018). The concentration of 5 fatty acid groups (saturated (SFA), unsaturated (UFA), monounsaturated
(MUFA), polyunsaturated (PUFA), long-chain (LC), medium-chain (MC), and short chain (SC)) on a per
milk basis as well as the volume moment mean (D[4,3]) and surface moment mean (D[3,2]) of 49,127 milk
samples were predicted from their MIR spectra recordings using CARS-PLSR prediction equations. Predicted
fatty acid concentrations and MFG size measurements were used in a univariate mixed effects animal model
to estimate the variance of each random component. Heritability of each fatty acid group and MFG size were
estimated based on the variances of the random components in the model. Heritability estimates suggested
that saturated fatty acids are more heritable than unsaturated fatty acids, short- and medium-chain fatty
acids are more heritable than long-chain fatty acids, and D[3,2] is more heritable than D[4,3]. These results
are consistent with those found by Fleming et al. (2018), but the estimated heritabilites in this study were
lower.

2.2 Introduction

Fatty acid composition and MFG size of milk samples is important for determining the nutritious properties
of milk, monitoring bovine health, and determining the technological properties of the milk (Fleming et al.,
2017a,b). Fat composition of milk plays a large role in both determining nutritious qualities of the milk
and also determining which consumer goods can be made with the milk. It follows that breeders would like
to select for cows which produce milk with desirable qualities. For example, breeders interested in selling
their milk to be used for cheese production would likely want to select for a certain MFG size, because the
surface material of MFGs play an important role in the finished product of cheeses (Marie-Caroline Michalski
et al., 2003). Fatty acid composition of milk can be influenced by both the cow’s diet and the cows genetics
(Fleming et al., 2018). MFG size is also influenced by the cow’s diet, and it was discovered that variation in
MFG diameter can exist within individuals in a herd, suggesting that MFG size is a trait that could possibly
be selected for (Fleming et al., 2017c; Logan et al., 2014).

In order to implement a genetic selection program for fatty acid composition and/or MFG size, there
must exist a fast way to cheaply and accurately determine the composition of many bovine milk samples.
The previous section investigated using MIR, spectroscopy to predict individual and group fatty acid con-
centrations as well as MFG size of milk samples. The prediction equations developed in the previous section
were implemented in this study to predict the composition of a large number of milk samples based on their
recorded MIR spectra, which were then used to estimate the heritability of certain fatty acid groups and
MFG sizes. This study uses univariate animal models including fixed and random effects to estimate the
heritability of each fatty acid group and MFG size studied.

2.3 Animal Model Overview
Theory behind animal models is adapted from de Villemereuil (2012).

Phenotypic traits of living organisms (such as fatty acid composition of mammal’s milk as studied in this
paper) exhibit variance in the population. The phenotypic variance of any given trait can be decomposed
as the sum of the genetic and environmental variance within the population. The genetic variance can be
further decomposed into different components. For our purposes, we will assume 2 components contribute to
the total genetic variance: an additive component and a non-additive component. The additive component
accounts for the additive effects of transmitted alleles, while the non-additive component accounts for other
effects such as dominance effects and epistasis. Knowing this, we can write

Ve =Va+VNna+VE, (14)
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where Vp represents the total phenotypic variance in the population, V4 represents the additive genetic vari-
ance, V4 represents the non-additive genetic variance, and Vg represents the environmental variance. The
additive genetic variance, V4, is the component of the total phenotypic variability which can be transmitted
to descendants in a population. Natural selection relies on a portion of the total phenotypic variation being
transmittable.

From here we can discuss heritability. Heritability (h?) is the proportion of phenotypic variability in a
given population that can be explained by the genetic variation between members of the population. Based
on this definition, heritability can be seen as a measure of the likelihood that the phenotypic variability
within a population will be transferred to its offspring. Mathematically we can write this as:

h? ==
Vp'

0<h?<l. (15)

Animal models are mixed models which can include many fixed and/or random factors to try and reduce
bias introduced by non-additive genetic variance. In order to accurately estimate heritability in our model,
we aim to include fixed and/or random factors to try to account for as much of the non-additive genetic
variance (Vy4) as possible, so that it does not get mistaken for additive genetic variance (V4). Animal
models use pedigree files of the the whole population to try and account for phenotypic resemblance between
samples taken from siblings. Another strategy to try and account for non-additive genetic variance is to
include animal identification numbers in the model as a random effect since samples taken from the same
animal are likely to be phenotypically similar.

Animal models are typically of the form:

m l
Yy = ZXZCZ + Z Zjdj + €, (16)
i=1 Jj=1

where y is a vector of the response, ¢;, i = 1,...,m are vectors of fixed class effects with corresponding
incidence matrices X;, i = 1,...,m, d;, j = 1,...,1 are vectors of random class effects with corresponding
incidence matrices Z;, j =1,...,1, and € is a vector of residuals.

2.4 Data

The dataset used in this section was the same as in Fleming et al. (2018). This section provides a summary
of the data collection method implemented in their study.

Data samples used in this study were collected during routine recordings of milk MIR spectra conducted
at CanWest DHI in Guelph, Ontario and Valacta in Saint-Anne-de-Bellevue, Quebec. Over the period from
January 2013 to January 2015, 2,053,396 records were collected from Holstein cow milk samples. Records
included but were not limited to the animal’s identification number, herd, calving age, days in milk, test
date, and MIR absorption of its corresponding milk sample at 1,060 wavelengths. Fleming et al. then
used milk fatty acid prediction equations developed using PLSR on MIR spectra to predict the fatty acid
composition on a per milk basis for all the samples. Records with spectral data which were considered
outliers or dissimilar to the spectra used to create the calibration equations were removed. RMSE of the
standardized predictors calculated using the prediction equations developed by Fleming et al. (2018) were
used to determine spectral outliers. Further record removal and data edits were performed as per Narayana
et al. (2016). The final dataset used in this study contained 49,127 records obtained from 10,029 first-parity
Holstein cows from 810 herds. Canadian Dairy Network also provided a pedigree file containing 76,074 cows
which was used to develop the models in this study.

2.5 Methods

The prediction equations obtained from performing CARS-PLSR on the Ln dataset were used to predict the
fatty acid content of the 49,127 records used in our model. The predicted composition of five fatty acid groups
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(SFA, UFA, SC, MC, and LC) expressed as In(g/100g milk+1) were predicted for each observation and used
in the models. The prediction equations obtained from using CARS-PLSR on the MFG size data were used
for prediction of D[4,3] and D[3,2] in the milk samples. Soyeurt et al. (2011) suggested that prediction models
achieving R2, > 0.75 could be used for genetic selection. The prediction models used achieved R, values of
0.95, 0.85, 0.75, 0.91, and 0.85 for the SFA, UFA, SC, MC, and LC groups, respectively. For the MFG data,
the prediction models achieved R2, values of 0.57 and 0.59 for D[4,3] and D[3,2], respectively. However,
it has been suggested that if there exists high genetic correlation between observed and predicted values,
models with R2, < 0.75 could still be used to effectively improve milk coagulation properties (Cecchinato
et al., 2009).

Heritability estimates of the predicted fatty acid contents were obtained through fitting the data to
univariate linear animal models. One model was fit for each of the 5 fatty acid groups considered in this
study. The models were as follows:

y=X,m+X,h+Z.c+Zyp+Z.a+e (17)

Where g is a vector of the predicted group fatty acid concentration or MFG size depending on which trait
was being analysed, m is a vector of fixed class effects for days in milk, h is a vector of fixed class effects for
herd-test day, c is a vector of random class effects for herd-calving age, p is a vector of random class effects
for permanent environment, a is a vector of random class effects for additive genetic effect of the animal,
and € is a vector of random errors. X,,, X}, Z., Z,, and Z, are all matrices which assign observations to
effects.

The variance of each of the random effect terms in the model were estimated with the animal model and
used to estimate the heritability of each trait and the repeatability of the results. Heritability was calculated
as

h? = % (18)
a 02+ 02+ 02402

where o2 is the herd-calving age variance, 01% is the permanent environmental variance, o2 is the additive
genetic variance, and o2 is the residual variance. Repeatability was calculated as

_ of—&—ag—l—ag 19
T_02+02+02+02' (19)
c P a €

Packages and Software

All animal models were fit using the Average Information REstricted Maximum Likelihood (AI-REML)
algorithm implemented in the DMU software package (Madsen et al., 2006).

2.6 Results

The estimated variances for each random component in the model are given in Table 6 and the estimated
heritabilities of each fatty acid group and MFG measurement are given in Table 7. Estimated heritabilities
are slightly lower that found by Fleming et al. (2018, 2017c).
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Fatty Acid Group o? o? o2 o?
SFA 114 x107% 376 x 1073 740x 1073 7.71x 1073
MUFA 716 x 107* 126 x 1073 9.05 x 1072  3.86 x 1072
PUFA 591 x 107° 1.66 x 1073 4.35 x 1073 1.06 x 1072
UFA 521 x 107% 1.16 x 1073 5.16 x 1073 2.96 x 1072
Short-Chain 1.51 x107* 3.79 x 1073 891 x 1072 1.40 x 1072
Medium-Chain 6.87 x 1075 248 x 1072 4.60 x 1073 6.27 x 1073
Long-Chain 472 x107% 1.94x 1073 1.04x 1072 3.77 x 1072
MFG Size

D[4,3] 1.14x 1073 4.35x 1072 1.04x 107! 1.36 x 10~*
D[3,2] 2.72x107% 1.80x 1072 3.92x 1072 423 x 1072

Table 6: Herd-calving age, permanent environment, additive genetic, and residual variance estimates of each
of the fatty acid groups and MFG measurements analysed.

Fatty Acid Group h? r
SFA 0.390 0.594
MUFA 0.182 0.222
PUFA 0.262 0.365
UFA 0.142 0.188
Short-Chain 0.332 0479
Medium-Chain 0.343 0.533
Long-Chain 0.206 0.254
MFG Size

D[4,3] 0.366 0.523
D[3,2] 0.393  0.576

Table 7: Table of estimated heritability of fatty acid groups and MFG measurements along with repeatability
estimates of the results.

2.7 Discussion

Biologically, it would be expected that short- and medium-chain fatty acids would be more heritable than
long-chain fatty acids in milk, because short- and medium-chain fatty acids are synthesized de novo in cows
whereas long-chain fatty acids are dietary and adipose derived (Fleming et al., 2018). This is consistent with
the heritabilities found in this study for SC, MC, and LC fatty acids, as well as the analysis performed by
Fleming et al. (2018). Furthermore, both this study and that performed by Fleming et al. (2018, 2017c¢)
found SFA to be more heritable than UFA, and D[3,2] to be more heritable than D[4,3]. However, the
heritabilities estimated in this study are all lower than that estimated by Fleming et al. MUFA and PUFA
were not included in the analysis performed by Fleming et al (2018), but these findings suggest that PUFA
is more heritable than MUFA.

It is important to highlight that prediction equations for D[4,3] and D[3,2] achieved R?, values of 0.57
and 0.59, respectively, which are lower than the genetic selection threshold of 0.75 proposed by Soyeurt et
al. (2011). This suggests that the prediction equations developed for MFG size are likely not adequate for
genetic selection purposes, unless there is a high genetic correlation between observed and predicted values
(Cecchinato et al., 2009). This study does not look into said genetic correlations.

Note that discrepancies between this paper and Fleming et al. (2018, 2017c) can be attributed to
using different animal models run on different software, as well as differences in predicted milk composition
properties due to different prediction equations used. Further studies could investigate how the CARS-PLSR
prediction equations developed in this study affect the heritabilites of the various milk properties when the
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data is used in an animal model of the same form as that used in Fleming et al (2018, 2017c). Improvements
to this animal model could be made by first investigating other regression methods mentioned previously that
have potential to offer more accurate predictions, and if significant improvements are made, using the new
prediction equations to generate a new predicted dataset to use in an animal model. Alternatively, if MIR
prediction does not offer sufficient accuracy, traditional methods of fatty acid and MFG size determination
could be used to obtain much more accurate measurements for each milk sample which will help reduce error
in the dataset used for running the animal models. However, this is unlikely due to the impracticality of
traditional methods.
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