The Angle Degeneracy Phenomenon in Deep Neural
Networks: Analysis and Relation to Training Dynamics

by
Cameron Jakub

A Thesis
presented to
The University of Guelph

In partial fulfilment of requirements
for the degree of
Master’s of Science
in
Mathematics & Statistics
(Collaborative Specialization in Artificial Intelligence)

Guelph, Ontario, Canada
(© Cameron Jakub, August, 2023

ABSTRACT

THE ANGLE DEGENERACY PHENOMENON IN DEEP NEURAL NETWORKS:
ANALYSIS AND RELATION TO TRAINING DYNAMICS

Cameron Jakub Advisor:

University of Guelph, 2023 Dr. Mihai Nica

Deep neural networks have proven to be powerful functions with many applications, but
the theoretical behaviour of these functions is not fully understood. One such behaviour
is the large depth degeneracy phenomenon, where inputs tend to become highly correlated
as they travel deeper into a randomly initialized network. This can make the network
effectively incapable of distinguishing between inputs, which has negative impacts on training
performance. Through combinatorial expansions, we develop precise formulas to predict the
expected value and variance of the angle between inputs at any layer of the initialized
network. We provide a detailed analysis of how quickly the angle tends toward zero in a
finite width setting, which proves to be qualitatively different than studying the problem in
the infinite width limit. We validate our theoretical results through comparison to empirical
simulations, and run experiments to explore how network degeneracy can impact training

dynamics.

Dedication

This thesis is dedicated to my parents Mike and Donna. Love you guys! =

il

Acknowledgements

First and foremost, I would like to offer my deepest thanks to my advisor, Dr. Mihai Nica,
for all of the time and effort he put into supporting me. Thank you for being an excellent
teacher, providing valuable insight and mentorship, and creating a fun and comfortable
learning environment for me. I've grown so much as a student and a researcher from your
guidance. I would also like to thank Dr. Graham Taylor for all the work he put into being
on my advisory committee and for providing me with valuable feedback. I would also like to
express my gratitude to Dr. Rajesh Pereira for his work on the examination committee, being
a fantastic teacher throughout my undergrad, and an excellent supervisor on the multiple
research projects we worked on.

Thank you to Dr. Matt Demers and Dr. Kim Levere for their exceptional teaching,
putting their trust in me to teach course content, and for always being a friend to chat
with. I am particularly thankful for Dr. Steve Gismondi, whose infectious enthusiasm for
math was the catalyst for me to pursue a math degree in the first place. Along with the
aforementioned faculty, I also want to extend thanks to the following professors who were
especially impactful during my time at Guelph due to their teaching style and mentorship:
Dr. Hermann Eberl, Dr. Ayesha Ali, and Dr. Herb Kunze.

My degree would not have been such a positive experience without my amazing support
network. Thank you to my parents, Mike and Donna, and my sisters Taryn, Kristen, and
Kaela for always being there for me. I also want to thank some of my closest friends
Jake, Luke, Matt, Dave, Grace, Emma, and Braydon. Thanks for the laughs, support,
and generally making this degree a whole lot of fun. Further, thank you to Kate and Arya
for being kind, supportive friends, and providing me with a welcoming place to stay during
the final months of my degree.

Last, I want to extend a big thank you to Eat Thai in downtown Guelph for consistently
making the best fried rice and pad thai in Guelph, keeping me fueled throughout my degree.

v

Contents

Abstract ii
Dedication iii
Acknowledgements iv
List of Tables vii
List of Figures viii

1 Introduction 1
1.1 The Large Depth Degeneracy Phenomenon in Neural Networks 1
1.2 Outline. 3
1.3 Main Results for the Angle Process 4
1.4 Introduction to the J Functions 9

2 ReLU Neural Networks on Initialization 12
2.1 Expected Value Calculation 14
2.2 Variance Calculation 16

3 Network Degeneracy as an Indicator of Training Performance 17
3.1 Comparison to Infinite Width Networks 18

4 Explicit Formula for Mixed-Moment J Functions 20
4.1 Statement of Main Results and Outline of Method 20
4.2 Gaussian Integration-by-Parts Formulas 23
4.3 Recursive Formulas for J,,(#) - Proof of Proposition 1 26
4.4 Solving the Recurrence to get an Explicit Formula for .J,;(6) - Proof of The-

0] 0 1 27

5 Conclusion And Further Work 33

Bibliography 34

A Appendix A 38

A.1 Expected Value Approximation 38

A.2 Variance Approximationo 39

A.3 Covariance Approximation 40

A.4 Third and Fourth Moment Bound Lemma 40

A.5 Expected Value Calculations 43

A5.1 Caleulation of E[R .o o000 43

A.5.2 Calculation of E [R'sin®(0“™)]o 44

A.6 Variance and Covariance Calculations 44

A.6.1 Calculation of Var [RF]o 46

A.6.2 Calculation of Var [R'sin®(0“™))] L 46

A.6.3 Calculation of Cov (R sin*(#“t), R . ..o Lo A7

A.7 Derivation of Useful Identities - Equations 2.1, 2.2 48

A.8 Cauchy-Binet and Determinant of the Gram Matrix - Equation 2.3 51

A.9 Infinite Width Update Rule 51

B Appendix B 53

B.1 Derivation of Lower-Order J Functions - Proof of Proposition 2 53

B.2 Proof of Explicit Formulas for J,pand J,1 54
B.3 Bijection between Paths in Graphs of J Functions and the Bessel Number

Graphs P,Q) 57

C Appendix C 60

C.1 Pand Q numbers 60

C.2 Recursions for the P and) numbers - Proof of Lemma 3 60

D Appendix D 62

vi

List of Tables

1.1
2.1

Al
A2
A3
A4

D.1
D.2
D.3
D4

Low Order J Functions, 11
Notation for Fully Connected ReLU Networks 13
Third Moment Bound Lemma: Irreducible Patterns 43
Variance of R Calculation 47
Variance of R“!sin?(0F!) Calculation 48
Cov (R"sin®(#°), R“*1) Calculation 49
Network Architecture Summary: Networks 1-20 62
Network Architecture Summary: Networks 21-45. 63
List of Hidden Layer Widths: Networks 1-25 64
List of Hidden Layer Widths: Networks 26-45 65

vil

List of Figures

1.1
1.2

3.1
3.2

4.1
4.2

B.1
B.2

Infinite Width Comparison and Monte Carlo Simulations 5
Mean and Variance Plots 0oL 8
Comparison of Network Degeneracy to Training Performance 18
Finite Versus Infinite Width Angle Prediction Comparison 19
Comparison of J and J* Graphs 29
Graphs of the P,), and J Recursions 30
Bijection between Paths in J* and P Graphs 58
Bijection between Paths in J* and () Graphs 59

viii

Introduction

1.1 The Large Depth Degeneracy Phenomenon in Neu-

ral Networks

Creating deep neural networks by stacking many layers has achieved exceptional performance
in many applications and contributed to the recent explosion of these methods. It has been
shown that the “power” of a network’s ability to approximate functions comes from the depth
of the network, rather than the width. In fact, Poole et al. [21] and Eldan and Shamir [9]
have shown that depth can exponentially improve the expressibility of a network. Specifically,
Eldan and Shamir [9] proved that there exists a function which cannot be approximated by
any two-layer feed forward neural network, but simply adding a layer to create a 3-layer
network allows one to approximate the function.

These findings may suggest that creating deeper networks is advantageous. However,
this is not always the case. As networks become deeper, they also are more susceptible
to becoming degenerate. This concept of degeneracy can be observed in multiple ways.
One sense in which a network can be considered degenerate is the concept of vanishing
and exploding gradients [10]. Hanin [10] studied this phenomenon in feed-forward ReLU
networks, and found that certain network architectures can cause the gradients of the network
to vary wildly on initialization. The stability of the gradients depends on the sum of the
inverse layer widths, where a larger sum corresponds to less stable gradients. Therefore,
networks with more layers can be more susceptible to unstable gradients. The vanishing and
exploding gradient problem poses a challenge to network training, and is an example of how
deeper networks do not necessarily correspond to better prediction.

Another sense in which feed forward neural networks can become degenerate is that as
inputs travel through a randomly initialized network, they tend to become more and more

correlated (i.e. the angle between inputs tends toward 0 as the number of layers tends toward

infinity). Therefore, if an initialized network has too many layers, it may send all inputs
to effectively the same output, making the network incapable of differentiating between
any two inputs fed into it. This is the type of degeneracy we study in this thesis, which
has been observed by many authors from different angles [2, 3, 8, 12, 18, 20, 23]. For
example, Schoenholz et al. [23] found that there is a maximum depth for which information
can propagate in random neural networks. They reason that when information is able to
properly propagate through the networks, the networks are able to train precisely. However,
there exists a maximum depth for which networks can be properly trained. Similarly, Hayou
et al. [12] observed that an improper choice of activation can cause loss of information during
the forward pass of training. Avelin and Karlsson [2] noticed the degeneracy as a “cut off”
behaviour, for which after a certain depth, networks begin to behave very differently. Nachum
et al. [20] even observed this phenomenon in convolutional neural networks, finding that the
level of degeneracy was dependent on the type of input being fed into the networks.

Previous works have developed strategies to combat degeneracy in deep feed forward
neural networks. For ReLU networks, Li et al. [18] demonstrated how shaping the ReLU
activation function can prevent the angle between inputs from becoming trivially small as
they travel deeper into the network. They shape the ReLLU function by tweaking the slopes
of the piecewise linear segments. Letting s_ represent the slope for negative inputs, and s,
represent the slope for positive inputs, they define the “leaky” ReLLU activation function ¢* :
R — R as ¢*(z) = s; max(z,0) 4+ s_ min(z,0). Rather than shaping the activation function,
other authors have shown that modifying the architecture of the network itself can preserve
the variation between inputs. ResNets [14] have shown that strategically introducing skip
connections (connections between non-adjacent layers) can allow very deep networks to train
properly. Similarly, Srivastava et al. [24] introduced Highway Networks, where “highway
layers” in the architecture can behave as a blend between a typical feed-forward layer and a
layer which simply passes inputs through to the next layer, which reduces information loss
over many layers. Martens et al. [19] introduced the method of “deep kernel shaping” to
prevent deep networks from becoming degenerate. They suggest a strategy which involves
function transformations on the activation function, precise parameter initialization, and
alterations to the architecture of the network itself.

Further, previous studies have provided analyses for how the angle between inputs evolves
in infinite width networks (i.e. a network studied in the limit that all layer widths tend to-
wards infinity) [11, 12, 22, 23]. Studying the angle evolution in the infinite width limit
suggests that the angle between inputs goes toward 0 polynomially fast. The infinite width

angle prediction uses the law of large numbers and thereby disregards any random fluctua-
tions in A given 6°. These random fluctuations, though small, can accumulate over many
layers leading to inaccurate predictions for finite width networks.

The depth degeneracy phenomenon in ReLLU networks has been observed in the past, and
the angle evolution in neural networks has been studied in the infinite width case, but there
has not yet been a study which provides a thorough analysis of the angle evolution for finite
width networks with the ordinary, unshaped ReLU function. This thesis provides a detailed
analysis of this problem, and provides a comparison of our finite width angle prediction to

the infinite width prediction developed in previous studies.

1.2 Outline

There are two main theoretical contributions of this thesis. The first is to prove Theorem
1, which describes the angle evolution between inputs in terms of a collection of mixed-
moment “J” functions, denoted Jg, for a,b € N. The second theoretical contribution is to
separately derive an explicit formula for any of the mixed moments J,;, given in Theorem
2. With these theoretical results, we also run simulations to study the relationship between
the predicted level of degeneracy in a network, and the network’s training performance on
multiple datasets.

Section 1.3 covers the main results for the angle process analysis in deep ReLLU networks.
Given the angle between inputs at layer ¢, Theorem 1 introduces accurate formulas to predict
the mean and variance of the angle at layer £+ 1. Theorem 1 is simplified into a convenient
finite width update rule for the angle in Approximation 1. We also compare our finite width
update rule to the infinite width rule, given in Approximation 3. Section 1.4 provides an
introduction to the J functions, which are essential for studying the angle evolution in a
finite width setting. A more detailed analysis of the J functions is given in Chapter 4.

Chapter 2 contains the analysis of the angle process and predicted distribution of In(sin?(6))
in deep ReLU networks. Section 2.1 covers our approximation of E[ln(sin?(6"!))] given 6*,
which leads to the finite width update rule for #° as in equation (1.1), while Section 2.2
outlines our approximation for Var[In(sin?(#1))].

Chapter 3 uses the results from Chapter 2 to explore how network degeneracy can affect
training performance. We run simulations which compare the predicted final angle between
inputs to the accuracy of classification on the MNIST [7], Fashion-MNIST [25], and CIFAR-

10 [17] datasets. In Section 3.1, we demonstrate the advantages of using our finite-width

prediction rule over the infinite width prediction rule.

In Chapter 4, we cover the derivation of the explicit formula for the J functions. We
state the main results of this section in Section 4.1, and cover the mathematical tools needed
to solve the expectations using Gaussian integration by parts in Section 4.2. We develop the
formula for J,; by first finding a recursive formula in Section 4.3, which reveals a connection
between the J functions and the Bessel numbers. This recursion is studied to develop an

explicit formula for J,; in Section 4.4.

1.3 Main Results for the Angle Process

In this thesis, we examine the evolution of the angle 8¢ between two arbitrary inputs z,, 15 €
R™n after passing through ¢ layers of a fully connected ReLU network (a.k.a. a multi-layer
perceptron) on initialization. The angle is defined in the usual way by the inner product

between two vectors in R™.

cos (9@) — (F'(2q), F*(2p)) 7

[E*(@a) [[F(zs) |
where n, is the width (i.e. number of neurons) of the ¢-th layer and F* : R%» — R™ is
the (random) neural network function mapping input to the post-activation logits in layer
¢ on initialization. We assume here that the initialization is done with appropriately scaled
independent Gaussian weights so that the network is on the “edge of chaos” [12, 23], where
the variance of each layer is order one as layer width increases. See Table 2.1 for our precise
definition of the fully connected ReLLU neural network.

With this setup, since the effect of each layer is independent of everything previous, #°
can be thought of as a Markov chain evolving as layer number ¢ increases. As expected
by the aforementioned “large depth degeneracy” phenomenon, we observe that the angle
concentrates #° — 0 as £ — oo (see Figure 1.1 for an illustration). This indicates that the
hidden layer representation of any two inputs in a deep neural network becomes closer and
closer to co-linear as depth increases.

In this thesis, we obtain a simple, yet remarkably accurate, approximation for the evolu-
tion of 6 as a function of ¢ that captures precisely how quickly this degeneracy happens for

small angles § and large layer widths n,.

Probability Density Function

Simulation of In(sin?(8%)) Layer 1
—-4.25 2.5

2.0
-4.50
x 1.5
-4.75
104
3
-5.00 Txx k 0.5

Frequency

=5.25 f X 5 =52 -50 -48 -46 -44 -42 -40

X x Layer 30
-5.50 051

o
IS

=5.75

w

—6.00

4 Infinite Width Prediction
E Our Approximation
% Monte Carlo Simulations

N

Frequency
o o

-6.25

o
B

o
o

-8 -7 -6 -5 -4 -3

0 5 10 15 20 25 30 i
Layer Number In(sin?(6%))
—— Predicted PDF B Empirical Histogram

Figure 1.1: We feed 2 inputs with initial angle #° = 0.1 into 5000 Monte Carlo samples of
independently initialized networks with network width n, = 256 for all layers. Left: Using the
Monte Carlo samples, we plot the empirical mean and standard deviation of In(sin?(8%)) at
each layer. We compare this to both the infinite width update rule and our prediction using
Approximation 1 for the mean of In(sin*(6%)). Our prediction for the standard deviation
in each layer using Approximation 2 is also plotted as the shaded area. In contrast to
our prediction, the infinite width rule predicts 0 variance in all layers. Right: We plot
histograms of our simulations as well as our predicted probability density function using
Approximation 2 from (1.10) at Layer 1 (top) and Layer 30 (bottom). The predicted and
empirical distribution are statistically indistinguishable according to a Kolmogorov-Smirnov
test, with p values 0.987 > 0.05 (top) and 0.186 > 0.05 (bottom). The code which produced
this figure can be found at the following link.

Approximation 1 (Finite Width Update Rule). For small angles 0° < 1 and large layer
width ng > 1, the angle ' at layer £ + 1 is well approzimated by

Insin®(6“T) ~ Insin? (%) — 339E — p(ne), (1.1)
m

where p(ng) is a constant which depends on the width ny of layer ¢, namely:

p— :%—FO(TL_Q). (1.2)

o) = In (n+5) __10n 6n

(n+ 5)2 * (n— 1)2

Figure 1.1 illustrates how well this prediction matches Monte Carlo simulations of #°
sampled from real networks. Also illustrated is the infinite width prediction for 6 (discussed

in Appendix A.9) which is less accurate at predicting finite width network behaviour than

https://github.com/camjakub/Depth-Degeneracy-in-Neural-Networks

our formula, due to the n, ! effects that our formula captures in the term p(n,) but are not

present in the infinite width formula.

Comparison to Infinite Width Networks

Approximation 1 predicts that #° — 0 ezponentially fast in £ due to the term p(n); it predicts

1 1
6° < exp (—5 Zp(nz)) = exp (— Z - + O<"¢_2)> :

i=1

(Note that the exponential behaviour vanishes when n, — oo with ¢ fixed). In contrast to
this prediction, an analysis using only expected values or equivalently working in the infinite-
width n, — oo limit predicts that §° — 0 like /=1, which is qualitatively very different! The
prediction of this rate was first demonstrated under the name “edge of chaos” [12, 23| and
again in Hanin [11], Roberts et al. [22]. These earlier works studied the correlation cos(6)
as a function of layer number, and showed showed that 1 — cos(6,) — 0 like £=2, which is
equivalent to 6, — 0 like £~ by Taylor series expansion 1 — cos(z) ~ 322 as z — 0. The
update rule for cos(6,) in the infinite width limit is given in Approximation 3. A derivation
for this update rule in our notation is provided in Appendix A.9.

The fact that #¢ decays polynomially fast in infinite width networks compared to exponen-
tially fast in finite width networks means that information is preserved better layer-by-layer
in infinite width networks. This highlights an interesting advantage of infinite width net-
works: They are less susceptible to the depth degeneracy phenomenon in the sense that
infinite width architectures can be made deeper than finite width ones before becoming
“degenerate”.

We can also derive the infinite width prediction from our result by replacing p(n) with
0 in the update rule (1.1). Exponentiating both sides and using sin(f) ~ 0, e’ ~ 1 + 6 for
0 < 1, Approximation 1 becomes (6°71)? &~ (6°)%(1 — Z6"), which is equivalent to the result
of Proposition C.1 of Hanin [11] and is also a corollary of Lemma 1 of Hayou et al. [12]. In
those papers, the rule was derived directly from the infinite width update rule for cos(#),
and those results are equivalent to the fact that #¢ ~ ¢~ as { — oo.

One of the main limitations of the infinite width predictions is that they predict zero vari-
ance in the random variable ,. In contrast to this, our methods allow us to also understand

the variance of this random variable, as discussed below.

More Detailed Results for the Mean and Variance

Approximation 1 is derived from a simplification of more precise formulas for the mean and

variance of the random variable In(sin?(#%)), which are stated in Theorem 1 below.

Theorem 1 (Formula for mean and variance in terms of J functions). Conditionally on the
angle 0° in layer {, the mean and variance of Insin?(6°T1) obey the following limit as the

layer width ny — oo

E[lnsin?(0°™)] =u(0°,ne) + O(n,?), Var[lnsin?(0°™1)] = o2(6°,n0) + O(n;?), (1.3)

—1)(1 —4J? 4 1
0. o (U DAY At
4J272 —1 +n n (4J2571 + 1)

4 (8J1271J272 — 8Jﬁ1 +4J7, —8J11J31 + Joo + 1)
n(1-57%(1-472,)°
8n(Jog + 1) N 8n(8JF 1 Jap — 8J1 +4J7 | — 81151 + Jap + 1)
(4J32 —1+n)? (n—1)2(1—4J7))?

Y

o?(0,n) =

(1.5)
16n(2J7 — 4J11J51 + Jop + 1)
(4Jo2 —1+n)(n—1)(1 - 4J12,1)’

where E, Var denote the conditional mean and variance of quantities in layer ¢ + 1 given
the value of 6° in the previous layer and Jop := J,5(0%) are the joint moments of correlated

Gaussians passed through the ReLU function ¢(x) = max{z,0}, namely

Jos(0) = Bg o0 (G)¢"(G)], (1.6)
where G, G are marginally N'(0,1) random variables with correlation E[GG] = cos(6).

The joint moments .J,;(6) are discussed in detail in Section 4. A new combinatorial
method of computing these moments is presented, which is used to give an explicit formula
is given for these joint-moments, which is presented in Theorem 2. Using the explicit formula
for J,, the result of Theorem 1 can be used to obtain useful asymptotic formulas for ;1 and

o, as in the following corollary.

Corollary 1 (Small § asymptotics for mean and variance). Conditionally on the angle 6° in

layer ¢, the mean and variance of In(sin®(0“*1)) obey the following limit as the layer width

Ny — OO

E[ln(sin*(0"))] = (6",) + O(n %),

(6, n) =In(sin?0) — 3%6’ — p(n)

a?(6,n) _5_ 0 (8 +

n 15mn

where p(n) is as defined in (1.2).

To derive Approximation 1 from Theorem 1, we simply keep only the first few terms of the
series expansion (1.8), and then also completely drop the variability, essentially approximat-
ing 02(0°,n) ~ 0 (Note that in reality 02(6,n) ~ 8/n from (1.9)). Therefore Approximation
1 is a greatly simplified consequence of Theorem 1.

Moreover, our derivation shows that In(sin?(6)) can be expressed in terms of averages
over n pairs of independent Gaussian variables (see (2.1-2.3)). Thus, by central-limit-theorem

type arguments, one would expect the following approximation by Gaussian laws which also

296

457

Var[In(sin?(0°™))] = o%(6°, ng) + O(n, ?),

(1.9)

86 68) ,
62 5
- +0 (9) ,

accounts for the variability of In(sin?(6%)) using our calculated value for the variance.

Expected Value of In(sin?(6%)) — In(sin%(6**1))

0.175

— In(sin2(6%)) — (6", ny)
-- Linear approximation
99% Confidence Band

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

o!

(a) Mean as a function of ¢

Figure 1.2: Plots comparing the functions (6, n) and 02(6,n) to simulated neural networks.
The linear approximation of u, used to create Approximation 1 is also displayed. Confidence
bands are constructed by randomly initializing 10000 neural networks with layer width n, =
1024, and a range of 100 initial angles 0.005 < #° < 0.8. We study 6! and use the
simulations to construct 99% confidence intervals for a) E [In(sin*(#*)) — In(sin*(6“"))] and

b) Var [In(sin®(#°™))].

0.8

0.008

0.007

0.006

0.005

0.004

Variance of In(sin?(6**1))

o2(6!, ny)
99% Confidence Interval

0.0

0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8

o!

(b) Variance as a function of ¢

(1.7)

Approximation 2. Conditional on the value of 6°, the angle at layer £ + 1 is well approzi-

mated by a Gaussian random variable
In(sin2(8°1)) = N (u(6%, n), 02(6%, ne)), (1.10)

where j1, 0% are as in Theorem 1.

We find that the normal approximation (1.10) matches simulated finite neural networks
remarkably well; see Monte Carlo simulations from real networks in Figure 1.1. The big ad-
vantage of this approximation is that it very accurately captures the variance of In(sin?(6)),
not just its mean. This variance grows as ¢ increases, so it is crucial for understanding
behaviour of very deep networks.

The methods we use to obtain these approximations are quite flexible. For example,
more accurate approximations can be obtained by incorporating higher moments J,;(6)
(see Chapter 2 for a discussion). We also believe that it should be possible to extend
these methods to other non-linearities beyond ReLLU and more complicated neural network

architectures through the same basic principles we introduce here.

1.4 Introduction to the J Functions

In 2009, Cho and Saul [5] introduced the p-th moment for correlated ReLU-Gaussians, which
they denoted with the letter J,

J,(0) = 27E [QOP(G)@P((;)} , (1.11)

where p € N, ¢(z) = max{z,0} is the ReLLU function, and G, G € R are marginally two
standard A(0,1) Gaussian random variables with correlation Cov(G,G) = cos(f). This
quantity has found numerous applications for infinite width networks. One simple application
of J; appears in the infinite width approximation for cos(*), where ¢ is fixed and we take

the limit ny,ng,...ny — oo (see Appendix A.9 for a detailed derivation):

Approximation 3 (Infinite Width Update Rule). In the limit that the width of each layer
tends to infinity, the infinite width approximation for the angle 6! given 6° is
Ji(6°) sin(0) + (m — 6°) cos(0")

cos (1) = = - : (1.12)

The formula for J; is the p = 1 case of a remarkable explicit formula for J, derived by

Cho and Saul [5] namely,

Jp(60) = (=17 (sin 6)*" (ﬁ%) (7;;:) |

This allows one to derive asymptotics of §¢ in the infinite width limit, as in Section 1.1.

However, there are several limitations to this approach. Most important is that the infinite
width limit is not a good approximation when the network depth ¢ is comparable to the
network width n ([18]). The infinite width limit uses the law of large numbers to obtain
(1.12), thereby discarding random fluctuations. For very deep networks, microscopic fluc-
tuations (on the order of O(n; ")) from layer to layer can accumulate over £ layers to give
macroscopic effects. This is why the infinite width predictions for 6 are not a good match to
the simulations in Figure 1.1; very deep networks are far from the infinite width limit in this
case. See Figure 1.1 where the infinite width predictions are compared to finite networks.
Instead, to analyze the evolution of the angle # more accurately, we need to do something
more precise than the law of large numbers to capture the effect of these microscopic fluc-
tuations. This is the approach we carry out in this thesis. While the mean only depends on
the p-th moment functions J, from (1.11), these fluctuations depend on the mized moments,

which we denote by J,; for a,b € N as follows!
Jaal0) = B [¢"(G)(G)] (1.13)

with G, G again as in (1.11) are marginally (0, 1) with correlation cos(). In Section 2.1 we
carry out a detailed asymptotic analysis to write the evolution of ¢ in terms of the mixed
moments J,;. In order to make useful predictions, one must also calculate a formula for
Jap(0). Unfortunately, the method that Cho-Saul originally proposed for this does not seem
to work when a # b. This is because that method used contour integrals, and relied on using
certain trig identities which do not hold when a # b. Instead, in Chapter 4, we introduce a
new method, based on Gaussian integration by parts, to compute J,; for general a,b via a

recurrence relation. By serendipity?, we find a remarkable combinatorial connection between

!Note that compared to Cho and Saul’s definition for .J,, we omit the factor of 27 in our definition of
Jap. The factor of 2m seems natural when a + b is even (like the case a = b = p that Cho-Saul considered),
but when a + b is odd a different factor of 2¢/271 appears! Therefore the factor of 27 would confuse things in
the general case (see Table 1.1). The correct translation between Cho-Saul J, and our J, 3 is Jp = 27J, p.

2This connection was noticed by calculating the first few J functions, and then using the On-Line Ency-
clopedia of Integer Sequences to discover the connection to Bessel number (https://oeis.org/A001498).

10

https://oeis.org/A001498

Jap and the Bessel numbers ([4]), which allows one to find an explicit (albeit complicated)
formula for J,; in terms of binomial coefficients. The formula for the first few functions are

shown in Table 1.1, and the general explicit formula is presented in Theorem 2.

b
N o 1 2 3

0 T—6 cos f+1 (m—0)+sin 0 cos 0 2(cos §+1)+sin? @ cos 6

1 sin 6+ (m—0) cos 6 (cos 0+1)2 3(m—0) cos 0+sin 0 cos? O-+2 sin 0

2 (m—0)(2cos? O+1)+3sinfcosf | 3cosd(cosh+1)2+2(cos§+1)-+sin? 6§ cos

(m—6)(6 cos? 8+9) cos 0

3

+5sin 6 cos? 6+4(6 cos? §+4) sin 0

Table 1.1: Table of formulas for the first few J functions. The normalizing constant appearing
in all entries, either ¢y = 27, ¢; = 2v/27 depending on the parity of a + b, has been omitted,
i.e. the table shows the value of ¢(q1bmod 2)Jap(#). (Note that when a = 0, the appropriate
convention of 0° = 0 is needed, see (4.1) for details). These generalize J,(#) of (1.11) which
appear on the diagonal of this table. Note that J,, = J,, so only upper triangular entries
are shown. An explicit formula for all J,; is derived in Section 4.4.

11

ReLLU Neural Networks on Initializa-

tion

In this chapter, we analyze ReLLU neural networks and show how the the mixed moments
Ju» appear in evolution of the angle #° on initialization. We define the notation we use for
a fully connected ReLLU neural network, along with other notations we will use in Table 2.1.
Note that the factor of \/% in our definition implements the so called He initialization
[13], which ensures that E[||2¢]|?] = ||«||* for all layers ¢. This initialization is known to be
the “critical” initialization for taking large limits of the network [12, 22]. Given this neural
network, we wish to study the evolution of 2 inputs z, and x3 as they traverse through the
layers of the network. Specifically, we wish to study how the angle 6 between the inputs
changes as the inputs are transformed from layer to layer.

The starting point for our calculation is to notice that because the weights are Gaussian,
the values of o, wg“ are jointly Gaussian given the vectors of ¢}, 5. In fact, it turns out
that by properties of Gaussian random variables, one only needs to know the values of the
scalars ||} ||, |5 and 6° to understand the full distribution of @4, gpgﬂ. (see Appendix A.7
for details) By using the positive homogeneity of the ReLU function ¢(Ax) = Ap(z) for A > 0,
we can factor out the effect of the norm of each vector in layer ¢. After some manipulations,
these ideas lead us to the following identities that are the heart of our calculations: a full

derivation of these quantities are provided in Appendix A.7 and A.8.

12

Symbol Definition

r € Rmn Input (e.g. training example) in the input dimension n;, € N
teN Layer number. ¢ = 0 is the input
ne €N Width of hidden layer ¢ (i.e. number of neurons in layer /)

Wt e Ru+1xne | Weight matrix for layer /. Initialized with iid standard Gaussian entries

sz,b ~ N(Oa 1)

¢ :R* — R" Entrywise ReLU activation function ¢(x); = ¢(z;) = max{z;,0}

ZY(x) € R™ | Pre-activation vector in the ¢t layer for input x (a.k.a logits of layer /)
M) = Wa, (g \/7W£+1

o’ go% e R™ Post-activation vector on inputs z,, xg respectively

o = p((xa)), ol = p(2(zp))

0 € [0, Angle between ¢, and ¢4 defined by cos(¢") := —”f:z] IT;B >H
i
71 +1 2
R e R Shorthand for the ratio R := —WH@ HQHZZ HQH
i

Table 2.1: Definition and notation used for fully connected ReLLU neural networks.

2’(1,(2 Ny

o=l aey, et 1Al 326 1)
iy = Bl 2t)
REH sin2(9+1) — Z (v(c —gp(Gj)go(éi)>2, (2.3)

where R = %, and G;, G; are all marginally N (0, 1), with correlation Cov(G;, @Z) =

cos(6%) and independent for different indices i. The identity in (2.3) is derived using the de-

terminant of the Gram matriz for vectors o’ gof;rl (full derivation given in Appendix A.8).

13

Combining the equations in (2.1) gives us a useful identity for the ratio R‘*!, namely:

4 & .
R = 3 E O} (G)*(G)). (2.4)
l

1,j=1

Given some 6°, we wish to predict the behaviour of #F!. Rather than studying §*! directly,
we instead study the quantity In(sin?(6**!)). This allows us to use convenient approximations
and identities for quantities we are interested in. (And indeed, a post-hoc analysis shows
that as & — 0, the random variable Insin®(6**!) has a non-zero constant variance which
depends only on n,. This is in contrast to 6 itself which has variance tending to zero.
This is one reason why the Gaussian approximation for Insin®(6%) € (—oo, 00) works well,
whereas Gaussian approximations for 6° or cos(f°) € [—1,1] are less accurate.) We first

derive a formula for E [In(sin®(8°™))].

2.1 Expected Value Calculation

In this section, we show how to compute the expected value of In(sin*(#%)) in terms of the
J functions as in Theorem 1. Firstly, using properties of the logarithm, we rewrite this

expectation as the difference
E [In(sin’(0*"))] = E [In (R™'sin®(6"""))] — E [In (R“")]. (2.5)

The two random variables R‘T! and R“!sin®(#“*1) in (2.5) both have interpretations in
terms of sums of Gaussians as in (2.3) and (2.4) which makes it possible to calculate their
moments in terms of the J functions. To enable our use of the moments here, we use the
following approximation of In(X) for a random variable X, which is based on the Taylor
expansion for In(1 4+ z) =z — 322 + ... (a full derivation is given in Appendix A.1):

X -EX] (X -E[X])?

In(X) = In(BIX)) + =5 = e +62(

X—_E[X]) | (2.6)

E[X]

where €3(x) is the Taylor remainder term in In(1 4+ z) = = — % + e3(x) and satisfies ex(z) =

O(z?). Applying this approximation to the terms appearing on the right hand side of (2.5),

14

and taking expected value of both sides, we obtain the estimates

Var R sin®(9°)
9E [RE1sin?(0441)]
Var [R"]
N 21D [REH]?

E [In (R“ sin®(0"1)] = In (B[R sin?(6°))) L} om),

E [In (R™")] =In (E [R™]) +0(n,?).

To control the error here, we have used here the fact that R‘*' and R sin?(#“*!) can be
written as averages over random variables as in (2.1 - 2.3). This allows us to show the 3rd
central moments for R“! and R sin?(9+!) are O(n,?); see Appendix A.1 for details. This
approximation is convenient because we are able to calculate the values on the right hand
side of the equations in terms of the moments J,; by expanding/taking expectations of the

representations (2.1 - 2.3). The key quantities we calculate are

4Jo —1
E [R™'] = 1ha=1, 1, (2.7)
Ty
4 16 5 5
Var |:R£+1:| = —(J272 + 1) -+ -3 (2J4,2 — —J272 + J222 -+ —) -+ @) (TLZ_S) s (28)
) ng 2 ’ 8
ne — 1)(1 — 432
E [R'sin®(91)] = (e)gw 171), (2.9)
8(=8Jt, +8J% Joo+4J%, —8J11J31 + Joo+1
Var |:R€+1 Sin2(9€+1)] — (1,1 1,1 2,2 nZJ 1,1J3,1 2,2) + O (7’]/22) :
(2.10)

where J,, = Jap(0%). These formulas are calculated in Appendices A.5 and A.6 by a combi-
natorial expansion using the representations from (2.1-2.3). Combining these gives the result
for u(0,n) in Theorem 1. Note that to obtain a more accurate approximation, we would

simply include more terms in the variance expressions in (2.8, 2.10).

15

2.2 Variance Calculation

In this section, we show how to compute the variance of In(sin?(¢%)) in terms of the .J

functions as in Theorem 1. We can rewrite Var[ln(sin*(#°+1))] in the following way:

Var[ln(sin®(97))] = Var [In (R sin*(6°)) —In (R*)] (2.11)
— Var [In (R sin2(0°))] + Var [In (R™)] — 2 Cov (In (R sin?(9°)) . In (R™1)) .

We have now expressed this in terms of R‘*! and R sin?(#“*!) which will allow us to use
identities as in (2.1 - 2.3) in our calculations. Appendices A.2 and A.3 cover the method
used to approximate the unknown variance and covariance terms above. Once again, we
control the error term arising from moments in the error term of the Taylor series by using
representation as sums (2.1 - 2.3). We have already calculated most of the quantities on the

right hand side already in our calculation for p(6,n). The only new term is

Cov (R™'sin®(0°"), R"') = niz (1677, — 32J11J51 4 8J22 +8) + O (n;?) .

This is again computed by a combinatorial expansion of the sums (2.1-2.3). (Full cal-
culation given in Appendix A.6). We now have solved for all of the functions needed to
perform our approximation of Var[ln(sin?(#“+1))]. Putting it together, we end up with the
expression for ¢%(6,n) as in (1.5). We compare the predicted probability distribution of
In(sin?(6)) using our formulas x(6,n) and o2(,n) to empirical probability distributions in

Figure 1.1.

16

Network Degeneracy as an Indicator of

Training Performance

This chapter uses the theoretical results derived thus far as an input into experiments that
investigate how the level of degeneracy can influence training. We use the formula (6, n)
developed in Theorem 1 to create a simple algorithm which accurately predicts the angle
between inputs after travelling through the layers of an initialized network up to an error of

size O(n,?) in layer /.

Algorithm 1 Angle prediction between inputs for a feed-forward ReLU network with depth
L and layer widths n,, 1 < ¢ < L. The function p(é,n) is given in Theorem 1.

1: 0 = angle between inputs

2: for (=0,...,L—1do

3 x = u(0° ny) > x represents E[ln(sin?(91))]
4: 0 = arcsin(e?)

5. end for

6: Final angle = 0

Algorithm 1 predicts the angle at the final layer on initialization based solely on the
network architecture ny,ns,...ny. If all inputs into an initialized network tend to be highly
correlated by the final layer, this could make it difficult for the network to distinguish
the differences between inputs and therefore harder to train. Figure 3.1 demonstrates how
networks which exhibit this type of degeneracy empirically tend to perform worse after
training, and seem to train less consistently than networks which can better distinguish

between inputs on initialization.

17

Finite Width Prediction

10
- MNIST . L e St o5
5 0 f h '
5 H 5.0
G 0561 :
5 i
4 041 | 4.5
© } w
0.2 . 40 8
()
~os/FMNIST - - £
9) ‘ Q' . { 5.5 E
c { + g
3 %67 { * 50 %
o } o
< @
+ 041 + 45 9
ki £
0.2 ’. 4.0 g
(=]
> 035 CIFAR-10 ; 1#‘{ 575 9
@©
é 0.30 {1 5.50
g 0.25 * i + + { 5.25
4 020 . { | 5.00
@ 0154 1 *{ ittt i { 475
. . . ; ; : 4.50
-14 -12 -10 -8 -6 -4 -2 0
In(sin? (84))

Figure 3.1: We compare 45 different network architectures trained on the MNIST [7],
Fashion-MNIST [25], and CIFAR-10 [17] datasets 10 times each. Using the architecture
of the network and Algorithm 1, we predict the angle between 2 orthogonal inputs at the
final output layer of the network on initialization. We express the angle as In(sin?(9%)), to
follow the form used when developing the finite width approximations. The angle is plotted
against the accuracy of each network on the test data after training, with error bars repre-
senting a 95% confidence interval across the 10 runs. All networks are trained using 1 epoch,
batch size = 100, categorical cross-entropy loss, the ADAM optimizer, and default learning
rate in the Keras module of TensorFlow [1]. See Appendix D for details on all of the network
architectures used. The code which produced this figure can be found at the following link.

When Algorithm 1 predicts that the network architecture forces inputs to become highly
correlated on initialization, this serves a warning that the network may train poorly. Before
going through the computationally expensive process of training many networks to assess
their performance, this prediction could be used to quickly filter out network architectures

that are unlikely to perform well.

3.1 Comparison to Infinite Width Networks

The angle degeneracy phenomenon has been studied in previous works for networks in the
limit of infinite width [11, 12, 22, 23]. The infinite width case uses the law of large numbers

18

https://github.com/camjakub/Depth-Degeneracy-in-Neural-Networks

and thereby disregards any random fluctuations in #*! given #‘. These random fluctua-
tions, though small, can accumulate over many layers leading to inaccurate predictions for
finite width networks (see Figure 1.1). The infinite width update rule is given below in
Approximation 3.

Another issue with using the infinite width prediction to study finite width networks is
that all networks with the same depth are treated exactly the same, since it does not take
into account the width of each layer. Both the depth of the network and the width of each
layer affect how the angle between inputs propagates layer-by-layer through the network.
Figure 3.2-Left illustrates how our method yields different angle predictions for different
architectures with the same depth, while the infinite width method does not. Figure 3.2-
Right shows the how the infinite width predictions differ from our “finite width” method

which takes into account fluctuations of size O(n~!) in each layer.

Finite Width Prediction Infinite Width Prediction Angle Prediction: Finite vs. Infinite Width

5.5 10 7
I H . om’
[} i 4
0.35 ' 1 | 5.4 o ooee,
H n 0.8 L
i 8 —_ o//
> 0.30 530 s 7
) € ° .
e © = 0.6 .
=1 H 4
o] © (9] 4
S o025 522 = e
< 5 £ -
7 % £047 .,
2 0.20 1 51 N ces S
g [« . ’
o .o
o bod® .,/
0.15 50 027 %~
4
4
4
. 4
0.10 4.9 0.0+

0.675 0.700 0.725 0.750 0.775
Angle at Final Layer (6%)

0.78

0.‘80 0.‘82 0.é4
Angle at Final Layer (6%)

0.86

0.2

0.‘4 OjG
ot (Finite Width)

0.8

1.0

Figure 3.2: Left: Comparison of the finite and infinite width predictions for 5 network
architectures with a depth of L = 3 trained 10 times each on the CIFAR-10 dataset [17].
The infinite width predicts the same final angle for all networks, since it only depends on
network depth. Right: Using the same 45 network architectures as in Figure 3.1, we plot
a comparison of the predicted angle 6§ using Algorithm 1 (finite width) versus the infinite
width prediction. We see that the infinite width prediction tends to underestimate the rate
at which 6° tends towards 0.

19

Explicit Formula for Mixed-Moment J

Functions

In this chapter, we develop a combinatorial method that allows us compute exact formulas
for the J functions. The method is to use Gaussian integration by parts to find a recurrence
relationship between the moments J, 3, and then solve it explicitly. We begin by generalizing
the definition of J,; from (1.13) to include a = 0 and/or b = 0 as follows. Let G, W be
independent N(0,1) variables. Then, we define the functions J,;(0) as

Jap(0) = E[G*(G cos§ + Wsin0)° 1{G > 0} 1{G cos§ + W sinf > 0}], (4.1)

where a,b € NU{0} and 1{A} is the indicator function for condition A. Note that G cos +
Wsinf = G is marginally N (0,1) and has correlation cos(f) with GG, matching the original
definition. The ReLU function satisfies the identity p(z)* = x*1{z > 0} for a > 1, so (4.1)
generalizes (1.13) to the case a = 0. We also note that J,;(0) = J,.(0) for all a,b € NU{0}.

4.1 Statement of Main Results and Outline of Method

By using the method of Gaussian integration by parts, we are able to derive recurrence
relations for the J,; functions. Since the definition of .J,; involves the indicator function
1{G > 0}, we must make sense of what the derivative of this function means for the purposes
of integration by parts; see Section 4.2 where this is carried out. Then, by use of the gen-
eralized Gaussian integration by parts formula given in Section 4.2, we obtain the following

recurrence relations for J, .

Proposition 1 (Recurrence relations for J,;). For a > 2, the sequence J,q satisfies the

20

recurrence relation:

ca—1
Tao(0) = (a— 1) Jaoso(8) + 3050 oy, (4.2)

Ca mod 2

where ¢y = 2m, ¢; = 2v/2w. Fora > 2, and b > 1, the collection J,; satisfies the following

two-index recurrence relation:
Jap(0) = (@ —1)Ju—24(0) + bcosOJ,_11(6). (4.3)

The same integration by parts technique that yields the recurrence relation also makes

it easy to evaluate the first few J functions. They are as follows:

Proposition 2 (Explicit Formula for Jo o, J10, J11). Joo, J1,0, and Jy1 are given by

T —0 1+ cos@ sinf + (m — 0) cos b
Joo(0) = or Jio(0) = W7 Jia(0) = (27r)) (4.4)

See Appendix B.1 for a derivation of these quantities. Note that Cho and Saul [5] have
previously discovered the formulas for Jy g and J; 1 by use of a completely different contour-
integral based method.

The combination of Propositions 1 and 2 make it possible to practically calculate any
value of J,;, when a, b are not too large. However, we are also able to find remarkable explicit

formulas for J,;, which we report below.

Proposition 3 (Explicit Formulas for J,0(6), J,1(0)). Let a > 2. Then, J,o and J, 1 are
explicitly given by the following:

— D
Tool8) = (@ =D [Juoano+ 20 57 LoDl

c il
amod 2 iZa(mod 2)

0<i<a

where ¢y = 2w, ¢ = 2v/2m. We can then use the explicit formula for J,o in the formula for
Ja,l:

Ja1(0) = (@ — D! | Jy mod 2.1 + cos @ Z Jio(0) ’

!
iZa(mod 2)
0<i<a

21

where an explicit formula for the first term (either Jyo or Ji 1 depending on the parity of a)

s given in Proposition 2.

Proof See Appendix B.2.

We can finally express J,; as a linear combination of Jy,, and Jy ,, as follows. (In light
of the previous explicit formulas, this is an explicit formula for J,;.) It turns out that the
coefficients are given in terms of two special numbers P(a,b) and Q)(a,b) which we define

below.

Definition 1 (P and @ Numbers). The numbers P(a,b) and Q(a,b) are defined as follows,

—2 . a>b, a=b(mod2)
P(a,b) = { B(5")12 (4.5)

?

0, otherwise

(=)! boa 30 (a+l _
Qla.b) 22272 .20 (7Y, a>b, a=b(mod 2) ' (4.6)

0, otherwise

P(a,b) represents a family of numbers known as the Bessel numbers of the second kind [4].
The Bessel numbers are the coefficients of the Bessel polynomials [6], which arise naturally in
studies of the classical wave equation in a spherical coordinate system [15]. The () numbers
are closely related to the Bessel numbers [16], and both the P and @ numbers follow a similar

recursion pattern to that of J,; (see Lemma 3). Using these, we can express J,; as follows:

Theorem 2 (Explicit Formula for J,,(6)). Let b > 2,a > 1, b > a. Then, we have the
following formula for J,,(8) in terms of Jo,, and Jy,

Jap="Y_ (D)azi(cos®)* " (Pla,a — i) = Q(a—1L,a—1=1)) Jopasi
i=0(mod 2)
0<i<a

+ Z (D)ai(cos0)*"Q(a — 1,a — i) J1 p—ari,
i=1(mod 2)
0<i<a

where (b)y =b(b—1)---(b—k+ 1) is the falling factorial with k terms.

Remark 1. Since Jy,, is also given in terms of Jo,, one may further simplify the formula

for Jup to be in terms of only Jy,, and Jy 1. This substitution yields the following formula.

22

For notational convenience, we will let § := b — a,

Jap= 3 (D)azi(cos0)*(Pla,a —i) = Q(a — 1,a — 1 —))Jo i

i=0(mod 2)
0<i<a

+ Z b)a—i(cos0)*'Q(a — 1,a — i) (6 + i — 1) J(511) mod 2.1

i=1(mod 2)
0<i<a
a—i (5 +i— 1)
+ cos 6 E E Ja—i(cos0)*'Q(a — 1, a—z)T
i=1(mod 2) j=4(mod2)
0<i<a 0<j<o+1

Jo,-

4.2 Gaussian Integration-by-Parts Formulas

This section covers two important formulas that together give us the tools for computing

the expectations that appear in J, .

Fact 1 (Gaussian Integration by Parts). Let G ~ N(0,1) be a Gaussian variable and f :
g2
R — R be a differentiable function with lim,_,, f(g)e2" = 0. Then,

E[Gf(G)] =E[f(G)]. (4.7)
Proof (of Fact 1). Applying integration by parts, we have

2
-9

E[Cf(C)] = / N f () =
_ [f(g) <_m)]w - /_Oo <_m) F(g)dg

= 0+/Oo f’(g)e;
= E[f'(G)]

]

Using this type of Gaussian integration by parts formula, we can generalize the expected
value of Gaussians to derivatives of functions which are not necessarily differentiable. For ex-
ample the indicator function 1{z > a} is not differentiable, but for the purposes of computing

Gaussian expectation, we can use the following integration formula.

23

Fact 2 (Gaussian expectations involving 1'{z > a}). Let G be a Gaussian variable and
)

acR. Let f: R — R such that lim,_, f(g)e™2 = 0. Then, using the Gaussian integration

by parts formula to assign a meaning to expectations involving the “derivative of the indicator

function”, 1'{x > a}, we have

e 2

Nors

E[1{G > a}f(G)] = f(a) (4.8)

Remark 2. The purpose of assigning a value to the expectation (4.8) is to allow one to
compute “honest” expectations of the form (4.7) when f(zx) involves 1{x > 0}; see Lemma 1
for an illustrative example. The final result does not require interpreting “I'{x > a}”; this
15 only a useful intermediate step in the sequence of calculations leading to the final result.
The formula can also be understood or proven in a number of alternative ways. One is
simply to say that 1'{x > a} = §{x = a} is a “Dirac delta function” at v = a. A more
rigorous way would be to take any differentiable family of functions 1.{x > a} which suitably

converge to 1{x > a} as € — 0 and then interpret the result as the limit of the expectation

limeo E[1/{G > a} f(G)].

Proof (of Fact 2). Applying integration by parts, we formally have

BV(G > (@)= [10> a}slo) —ds
- [1{g>a}f(g>%] - [re=al (f(g)%) dy.

2

Note that the first term is 0 by the hypothesis lim f (g)e% = 0, and we have then
g—o0

—a

B(G > a)f(@) = - [4 (f@%) dg =~ [f(g)%] =0+ f(a)

a

where we have used the hypothesis on f once again.]

Corollary 2. For two independent Gaussian variables G,W, and f : R?> — R such that

24

)
lim, o E[f(g,W)]e™ =0, we have that

_a2

e 2

Nors

The two facts about Gaussian integration by parts can be combined to create recurrence

E[I{G > a} f(G,W)] = E[f(a, W)]

relations for expectations involving 1{G > a}. A simple example is the following lemma,
which we will also use later in our derivation. The proof strategy of this lemma is a microcosm
of the proof strategy we use to compute J,; in general, namely to use Gaussian integration

by parts to derive a recurrence relation and initial condition, and then solve.

Lemma 1 (Moments of ¢(G)). For k > 0, we have

(k=DY L 4s even E— 1)

El¢(G)"] = BG'{G > 0} = ° _ gt
(kLN k1 dd Ck—1 mod 2
Vo s 0

where cg = 2w and ¢; = 2+/2m.

Proof. We prove this for even and odd k separately by induction on k. The base case for
k = 0 is trivial since (0 — 1)!'! =1 is the empty product. The base case k = 1 follows by first
applying (4.7) with f(x) = 1{z > 0} and then applying (4.8) with f(z) =1,

E[p(G)] = E[G - 1{G > 0}] = E[I{G > 0}] = \/LQ_W

Now, to see the induction, we apply (4.7) with f(z) = 2*'1{z > 0}, k > 2. Due to the

product rule, there are two terms in the derivative,

Elp(G)*] = E[G - GF'1{G > 0}] (4.9)
= (k— DE[G"*1{G > 0}] + E[G"'1'{G > 0}]
= (k= DE[p(G)"] +0,

where we have recognized that the second term is 0 by application of (4.8) with f(x) = %!

which has f(0) = 0. The recurrence E[p(G)*] = (k — 2)E[p(G)*~?] along with initial

condition leads to the stated result by induction. O

25

4.3 Recursive Formulas for J,;(0) - Proof of Proposi-

tion 1

Proof (of Proposition 1). To find a recursive formula for J,o,a > 2, we apply the Gaussian
integration by parts formula (4.7) to f(z) = 2% '1{z > 0}1{z cos §+WW sin# > 0} to evaluate
the expected value over GG first. When applying the product rule there are three terms:

Joo =E[G - G '1{G > 0}1{G cos § + W sinf > 0}] (4.10)
=(a — 1)E[G**1{G > 0}1{G cos§ + W sin§ > 0}]
+ E[G“M1{G > 0}1'{G cos § + W sinf > 0}] cos §
+ E[G“M1'{G > 0}1{G cos § + W sin § > 0}].

The first term is simply (a—1)J,_20. The last two terms can now be evaluated with the help
of (4.8). The last term of (4.10) is (4.8) with the function f(x) = 2 11{z cos 6+ sin§ > 0}
which has f(0) = 0 for a > 2. Therefore, this term simply vanishes.

To evaluate the middle term of (4.10), we introduce a change of variables to express
G cosf + Wsin 6 in terms of two other independent Gaussian variables Z, W ~ N (0, 1)

Z =Gcosf + Wsind, G = Zcosf + Y sind, (4.11)
Y =Gsinf — W cos b, W = Zsinf — Y cos®,

where Y, Z iid N(0,1). Under this change of variables, .J, o, a > 2 is setup to apply (4.8)
with f(z) = 1{xcosf + Y sin0}* ' 1{z cosf + Y sinf > 0}:

Juo = (a—1)Js 90+ E[G*'"1{G > 0}1"{G cos§ + W sin 6 > 0}] cos 6
= (a—1)Jy 20+ E[(ZcosO + Y sin0)* '1{Zcosf + Y sind > 0}1'{Z > 0}] cos 0

=(a—1)Jy 20+ E[(0+ Ysind)*'1{0 + Y sinf > 0}] cosd

1
V2T
iaa—1
sin®" " 6 cos @
=(a—1)Jogg9+ ——(a — 2)!!,
Ca mod 2

where we have applied Lemma 1 to evaluate the last expectation.

A similar argument is used to find the recursive formula for J,;, @ > 2,0 > 1, by using

(4.7) with the function f(z) = 2% Yxcosf + Wsin0)’1{z > 0}1{xcosf + Wsinf > 0}.

26

There are four terms in the product rule derivative. Fortunately in this case, the last two
terms are simply zero by application of (4.8) since the expressions vanish when G = 0, so

we get

Jop = E[G - G (G cos§ + W sin0)’1{G > 0}1{G cos § + W sin§ > 0}]
=E[(a — 1)G**(Gcos + W sin0)°1{G > 0}1{G cos + W sin 6 > 0}]
+E[G*'bcosO(G cosf + W sin)" 1{G > 0}1{G cos § + W sin § > 0}]
+ E[G (G cos§ + W sin 0)1'{G > 0}1{G cos § + W sinf > 0}]
+E[G* (G cos + W sin0)’1{G > 0}1'{G cos § + W sin® > 0} cos 0]
=(a—1)Jyap+bcostJ,_1p-1+0+0,

as desired. 0

4.4 Solving the Recurrence to get an Explicit Formula
for J,(0) - Proof of Theorem 2

Solving the recurrence for the sequences J,o and J,; to get the claimed explicit formula
for J, is a simple induction proof. We defer these to Appendix B.2. More difficult and

interesting is the 2D array J,;. To solve the recurrence
Jop = (a—1)Jg_0p+bcosOJy,_1p-1, a>2,b>1, (4.12)

we will apply the recursion repeatedly until J,; can be expressed as a linear combination of
Jon and Jy,, terms for which we already have an explicit formula developed. To determine
the coeflicients in front of J,, and J; ,, we take a combinatorial approach by thinking of the

recurrence relation as a weighted directed graph as defined below.

Definition 2 (Viewing a recursion as a directed weighted graph). We can view the recurrence
relation for J,, as a weighted directed graph on the vertex set (a,b) € Z* where vertices
represent the values of J,;, and directed edges capture how values of Jo are connected through

the recurrence relation. To be precise, the graph edges and edge weights w,. are defined so

27

that the recursion (4.12) for J,, can be expressed in the graph as a sum over incoming edges,

Jav= > wlluy, (4.13)

e:(a’,b')—(a,b)

where the sum is over the edges e with weight w! incoming to the vertex (a,b). An example
of the graph to calculate Jg g is illustrated in Figure 4.1.

By repeatedly applying the recursion, J,p, can be expressed as a linear combination of
the values at the source vertices of the graph (i.e. those with no incoming edges). For the
recurrence Jqp, the source vertices are Jo,, and Jy,. The coefficient in front of each source

1s simply the weighed sum over all paths from the source to the node, namely

Ja,b = Z WUJ—>(a,b) JU = Z W(bé,n)%(a,b) Jovn + Z W({,n)%(a,b) JL?"N (414)

source vertices v n>0 n>0

W(i’,b’)%(a,b) = Z H w!, (4.15)

m:(a’ b)—(a,b) eET
where the sum is over all paths m from the vertex (a’,b') to the vertezx (a,b) in the J graph.

In light of (4.14), to prove Theorem 2, we have only to calculate the weighted sum of
paths I/V0) (a.b) and W/ (1) (a.b)- These weighted sums turn out to be given in terms of the

P and) numbers which were defined in Definition 1.

Proposition 4 (Weighted sums of paths for J). In the graph for J, we have the following
formulas for the sum over weighted paths W defined in (4.15),

W(‘ém)ﬁ(a’b) = (b)y—_n(cos0)" ™ (P(a,b—n) — Q(a —1,b—n — 1)), (4.16)
W({,n)ﬁ(a,b) = (b)p-n(cos0)" "Q(a — 1,0 —n). (4.17)

To prove this Proposition 4, we first create a simpler recursion, J*, which we solve first
and then slightly modify the solution to get the solution for J.
Lemma 2 (Weighted sums of paths for J*). Let J;, be defined to be the recursion:

a

oy = (a—=1)J5 oy +1J5 1, for2<a<b, (4.18)

Thinking of this recursion as a graph as in Definition 2 (see Figure 4.1 for an illustration),

28

6 | Jos 6 | Js
8cosf
5 5 | Js7 5 5| J5r
Tcost 1
4 | Jug Ju6 4 | Jis 1| Jig
8csh 6cosf 1 1
3 3 S| 3] Jap 3 3|57 | 3| Jas
Tcosl 5cosf 1 1
2 ']2.8 2 J2‘6 2 J214 2 J2*8 2 Jzﬁ 2 J2*,4
8cosl 6cosb 4cosf 1 1 1
1 1 =]1'7 1 .]1_’5 1 (]1’3 1 1 Jl*J 1 Ji5 1 Jf,S
1 1 1
0 | Jos Jos Joa Jo,2 0 | Jos Jo6 Jo4 o2
(a) Directed graph associated with J (b) Directed graph associated with J*

Figure 4.1: The graph associated with the recursions for J in (4.12) (left) and J* in (4.19)
(right). The graph is defined so that the recursion is given by a sum of incoming edges as in
(4.13). The edges are color coded red and blue to match the coefficients in the recursion.

we have that the sum of weighted paths W7 defined analogously to those in (4.15), are given
by P and Q numbers, namely

Wi s@p = Pla,b=n), Wi,y = Qa—1,b—n). (4.20)

The connection between the J* and the P, () numbers is through the following recursion

for the P, () numbers.

Lemma 3. (Recursion for P and) numbers) The P numbers, defined in Definition 1,
satisfy P(0,0) =1, P(n,n) = P(n—1,n—1) forn > 1, and the recursion

P(a,b)=(a—1)-Pla—2,b)+1-Pla—1,b—1), for a>2,0<b<a-—2,

under the convention that P(a,—1) = 0. The Q numbers satisfy the same recursion as the

P numbers, with a coefficient of a rather than (a — 1).

The proof of Lemma 3 is an easy consequence of known results from [16] and is deferred
to Appendix C.2.

Proof (of Lemma 2). Using the same idea of recursions expressed as graphs as in Definition
2, the recursion from Lemma 3 means that P and) can be expressed as weighted directed
graphs. These are displayed in Figure 4.2. Since the P and) graphs have only one single

unit valued source vertex at (0,0), (4.14) shows that the P and @ numbers are actually

29

themselves equal to sums over weighted paths in their respective graphs

P(a,b) = W(I(:).,O)%(a,bﬁ Q(a,b) = W(Cg,o)ﬁ(a,b)-

0 1 2 3 4 5 6 0 1 2 3 4 5 6 8 7 6 5 4 3 2
0|1 0|1 6 | Jis
1 1 1
1 11 1 2|1 5 5| J3
1 1 1
2 |1 |1 2 | 2 31 4 | Jig| |1 | Jig
1 1 1 1 1 1
3 3| 3 3| 1 3 1|5 11 3 J3q J3s
1 1 1 1 1 1
4| 3 16 11 4 |8 9 1 2 | Jis| |2 | e |2 |54
1 1 1 1 1 1 1 1 1
5 15 5| 10 5 | 1 5 6| 33 6| 14 6 1 1 O I A N S I 1| Jis
1 1 1 1 1 1 1 1 1
6 |15 | [6| 45| [6 15| [6] 1 6 0 | Jis Jis Jo4 Jo2
*
(a) P (b) @ (c) J6,8

Figure 4.2: Graphs associated with the recursions for the P numbers (left),) numbers
(middle), and J* (right). The weighted edges indicate the coefficients in the recursions for
P, Q, J* respectively. The diagrams are lined up so that the sum of weighted paths in from
Jg s can be directly read from the P and @) entries in the same location. By reading from the
bottom displayed row of P we see that the weighted sum over paths W(‘étn) L(68) are 15, 45,
15 and 1 for n = 8,6,4 and 2 respectively. (Since these are the source vertices, this shows
that J5g = 15J55 +45J56+ 155, +1J5,.) From the bottom displayed row of @ we see that
the values for sums of weighted paths from vertices W(‘fn) y(6,8) are 33, 14 and 1 forn="7,5
and 3 respectively.

Therefore the statement of the lemma is that sum over weighted paths in the J* graph
are the same as other sums over weighted paths in the P graph/@ graphs,

7t P 7 @
Wy s@n = Woos@s—nr Wan-@n = Woo-@—15-n) (4.21)

The fact that these are equal is demonstrated by establishing a simple bijection between
weighted paths in the P graph/Q graph, and weighted paths in the J* graph. For example,
in Figure 4.2, there is a bijection between the weighted paths in the P graph which connect
P(0,0) to P(6,2), to the paths which connect Jgg to Jgs in the J* graph. The bijection
is simply to flip any path in the P-graph by rotating it by 180° to get a valid path in the
J*-graph. Moreover, the edge weights for J* and P are precisely set up so that under this
bijection, the paths will have the same set of weighted edges in the same order. A full, more

detailed, explanation of this bijection is given in Appendix B.3. This argument shows that

30

W(‘étn)ﬁ(mb) = P(a,b—n) as desired.

The P numbers do not apply for paths between J;,, and J; , because we are starting one
row higher so the first vertical upward edge is weight 2. In this case, there is a bijection to
the Q-graph after flipping the path. For any path which runs from a node in row 1 to the
top left corner of the J*-graph, we can find the same “flipped” path in the graph of the @),
running from the top left entry to the corresponding node in row a — 1. (The bijection is

explained in detail in Appendix B.3.) Hence VV1 (1) s(ap = @(a—1,b—n) as desired. O

Having solved for J* in terms of P and (), it remains to translate these into the weights

for J to obtain Proposition 4.

Proof (of Proposition /). The proof follows by relating the weighted sum of paths for J in
terms of J* and then applying the result of Lemma 2. There are two differences between

the formula for J,; compared to J,, which can both be seen in Figure 4.1. We handle both

a,b?

differences as follows:

Difference #1: J has a weight of bcosf on the blue diagonal edges (a,b) — (a+1,b+ 1) vs
J* has a weight of 1.

This difference is handled by the following observation: any path from (a,b) — (da/, 1)
in the graph goes through each column between b and &’ exactly once. This means that the
contribution of the edge weights from these edges do not depend on the details of which path
was taken, only the starting and ending points. They always contribute the same factor,
(b)y_p(cos0)” . (Recall that (b), = b(b — 1)---(b— k + 1) is the falling factorial with k
terms.) This argument shows that the weighted sum of paths in J and J* are related by

W(b;,b)%(a’,b’) = (b)b/_b(COS 9) W(a b)—(a’)" (422)

By the result of Lemma 2, this shows that Wd,n)ﬁ(a,b) = (b)p_n(cos0)Q(a — 1,b —n) as
desired. Equation (4.22) holds for all paths with starting point @ > 1. When a = 0, there is

one additional difference between J and J* which is accounted for below.

Difference #2: Jy,, has no diagonal edge vs Jg,, has a diagonal blue edge of weight 1.
Because of this “missing edge”, the only choice in J for paths starting from (0, n) is to
first go vertically up by 2 units to (2,n). Hence W({)) (ad) = Wé) s(ap)- L0 evaluate this,

we use the decomposition of paths in J* by what their first step is, either a diagonal blue

31

step or a red vertical up step, to see that

J* J* J*
Wiom =@ = Winsn—=@n T Wan)—ap): (4.23)
= Wé,n)ﬁ(a,b) = W(‘é,n)a(a,b) - Wd,n+1)%(a,b) (4.24)
= P(a,b—n)—Qa—1,b—n—1), (4.25)

by the result of Lemma 2. By applying now (4.22) to relate J and J*, we obtain W({),n) Sap) =

Wé,n)%(a,b) = (b)p_n(cos0)>"(P(a,b—n) — Q(a — 1,b —n — 1)) as desired. O

Proof (of Theorem 2). The formula is immediate from (4.14), which writes J,; as a linear

combination of .Jy,, and .J;,, and Proposition 4 which gives the the coefficients. O

32

Conclusion And Further Work

This thesis provides a detailed analysis of the angle process in deep feed forward ReLU
networks on initialization. Our derivation of an explicit formula for the mixed-moment J
functions allows for this analysis to be repeated with more accurate approximations for
the mean and variance of In(sin*(6)) by including higher-order mixed .J functions in the
calculations.

We believe the methods proposed here are flexible enough to be modified to apply to
non-linearities other than the ReLU. It would be interesting to repeat our analysis for other
activations, such as tanh(z) to see how the angle evolution changes compared to the ReL.U.
The angle evolution could also be studied for ReLLU networks with architectures beyond fully-
connected networks. Adding skip connections or highway layers can improve information
flow to deep layers of a network. Performing a similar analysis as ours on ResNets [14] or
Highway Networks [24] could help us better understand how inputs behave as they travel
through these modified architectures.

As mentioned previously, one method to combat network degeneracy is activation func-
tion shaping, where the activation function is tweaked in such a way to preserve the angle
between inputs. It would be interesting to repeat our analysis for a more generalized ReLU
function, such as the “leaky” ReLU studied in Li et al. [18], where they alter the slopes of
the ReLLU function on the negative and positive domains. Developing a more general update
rule which depends on the modified slopes of the modified ReLLU function would allow us
to conduct a detailed analysis on how shaping the ReLLU prevents the network from sending
inputs to highly correlated outputs.

The experiments in Chapter 3 and would be an interesting starting point for more detailed
experiments and/or theoretical explanations about training. We saw that network architec-
tures which were predicted to have highly correlated outputs tended to perform worse and
train more inconsistently than networks which better preserved the angle between inputs.

This observation combined with the simplicity and efficiency of Algorithm 1 suggests our

33

prediction method may lend itself well to applications in neural architecture search.

34

Bibliography

1]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqgiang Zheng. 2015. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. https://www.tensorflow.org/ Software available
from tensorflow.org.

Benny Avelin and Anders Karlsson. 2022. Deep Limits and a Cut-Off Phenomenon
for Neural Networks. Journal of Machine Learning Research 23, 191 (2022), 1-29.
http://jmlr.org/papers/v23/21-0431.html

Sam Buchanan, Dar Gilboa, and John Wright. 2021. Deep Networks and the Multiple
Manifold Problem. In International Conference on Learning Representations. https:
//openreview.net/forum?id=0-6Pm_d_Q-

Gi-Sang Cheon, Ji-Hwan Jung, and Louis W. Shapiro. 2013. Generalized Bessel numbers
and some combinatorial settings. Discrete Mathematics 313, 20 (2013), 2127-2138.

Youngmin Cho and Lawrence Saul. 20009. Kernel Methods for Deep Learn-
ing. In Advances in Neural Information Processing Systems, Y. Bengio, D. Schu-
urmans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Vol. 22. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2009/file/
5751ec3e9a4feab575962e78e006250d-Paper . pdf

Ji Young Choi and Jonathan D.H. Smith. 2003. On the unimodality and combinatorics
of Bessel numbers. Discrete Mathematics 264, 1 (2003), 45-53. https://doi.org/
10.1016/80012-365X(02)00549-6 The 2000 Com2MaC Conference on Association
Schemes, Codes and Designs.

Li Deng. 2012. The MNIST database of handwritten digit images for machine learning
research. IEEFE Signal Processing Magazine 29, 6 (2012), 141-142.

35

https://www.tensorflow.org/
http://jmlr.org/papers/v23/21-0431.html
https://openreview.net/forum?id=O-6Pm_d_Q-
https://openreview.net/forum?id=O-6Pm_d_Q-
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://doi.org/10.1016/S0012-365X(02)00549-6
https://doi.org/10.1016/S0012-365X(02)00549-6

8]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

Benoit Dherin, Michael Munn, Mihaela Rosca, and David GT Barrett. 2022. Why
neural networks find simple solutions: The many regularizers of geometric complexity.
In Advances in Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=
-ZPeUAJ1kEu

Ronen Eldan and Ohad Shamir. 2015. The Power of Depth for Feedforward Neural
Networks. In Annual Conference Computational Learning Theory.

Boris Hanin. 2018. Which Neural Net Architectures Give Rise to Exploding and Van-
ishing Gradients?. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/
file/13£9896df61279c928£19721878fac41-Paper.pdf

Boris Hanin. 2023. Random Fully Connected Neural Networks as Perturbatively Solv-
able Hierarchies. arXiv:2204.01058 [math.PR] https://arxiv.org/abs/2204.01058

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. 2019. On the Impact of the
Activation Function on Deep Neural Networks Training. In International Conference
on Machine Learning.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In 2015
IEEE International Conference on Computer Vision (ICCV). 1026-1034. https://
doi.org/10.1109/ICCV.2015.123

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learn-
ing for Image Recognition. In 2016 IEEE International Conference on Computer Vision
and Pattern Recognition. 770-778. https://doi.org/10.1109/CVPR.2016.90

Harry L Krall and Orrin Frink. 1949. A new class of orthogonal polynomials: The Bessel
polynomials. Trans. Amer. Math. Soc. 65, 1 (1949), 100-115.

Alexander Kreinin. 2016. Integer Sequences Connected to the Laplace Continued Frac-
tion and Ramanujan’s Identity. Journal of Integer Sequences 19 (06 2016), 1-12.

Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. (2009),
32-33. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Mufan Bill Li, Mihai Nica, and Daniel M. Roy. 2022. The Neural Covariance SDE:
Shaped Infinite Depth-and-Width Networks at Initialization. In Advances in Neural
Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (Eds.). https://openreview.net/forum?id=WG3vmsteqR_

36

https://openreview.net/forum?id=-ZPeUAJlkEu
https://openreview.net/forum?id=-ZPeUAJlkEu
https://proceedings.neurips.cc/paper/2018/file/13f9896df61279c928f19721878fac41-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/13f9896df61279c928f19721878fac41-Paper.pdf
https://arxiv.org/abs/2204.01058
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=WG3vmsteqR_

[19]

[20]

[21]

[22]

[23]

[24]

[25]

James Martens, Andy Ballard, Guillaume Desjardins, Grzegorz Swirszcz, Valentin Dal-
ibard, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. 2021. Rapid training of deep
neural networks without skip connections or normalization layers using Deep Kernel
Shaping. CoRR (2021). arXiv:2110.01765 https://arxiv.org/abs/2110.01765

Ido Nachum, Jan Hazla, Michael Gastpar, and Anatoly Khina. 2022. A Johnson-
Lindenstrauss Framework for Randomly Initialized CNNs. In International Conference
on Learning Representations. https://openreview.net/forum?id=YX0lrvdPQc

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. 2016. Exponential expressivity in deep neural networks through tran-
sient chaos. In Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2016/file/
148510031349642de5ca0cb44f31b2ef-Paper.pdf

Daniel A. Roberts, Sho Yaida, and Boris Hanin. 2022. The Principles of Deep Learning
Theory: An Effective Theory Approach to Understanding Neural Networks. Cambridge
University Press. https://doi.org/10.1017/9781009023405

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. 2017.
Deep Information Propagation. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=H1W1UN9gg

Rupesh K Srivastava, Klaus Greff, and Jiirgen Schmidhuber. 2015. Training Very
Deep Networks. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2015/file/
215a71a12769b056c3c32e7299f1cbed-Paper . pdf

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. http://arxiv.org/abs/
1708.07747

37

https://arxiv.org/abs/2110.01765
https://openreview.net/forum?id=YX0lrvdPQc
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://doi.org/10.1017/9781009023405
https://openreview.net/forum?id=H1W1UN9gg
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

Appendix A

A.1 Expected Value Approximation

Lemma 4. Both the random variables X = R and X = R sin?(0°) satisfy

E[ln(X)] = In(E[X]) — ;f%)a(j +O(n;?). (A1)

Proof. First note that by the properties of the logarithm, we have

In(X) = In <E[X] (E[X] +E())[§(]_ E[XD)) — n(E[X]) + In (1 + X];[—EXU . (A2)

We can now apply the Taylor series In(1 + z) = = — %2 + €3(x), where ey(x) is the Taylor

series remainder and satisfies e;(z) = O(z?). Hence

_ X-EX] (X-EX])? X — E[X]
In(X) = In(E[X]) + EX] B[] €2 (W) :
Note that E[X — E[X]] = 0, and E[(X — E[X])?] = Var[X]. Thus, if we take the expected

value of our above approximation, we get the following:

Efln(X)] = In(E[X]) ;’E%j LB {62 (X];[—%X])} |

By using bounds on the Taylor series error term e;(x) = O(2?), one can obtain bounds for
this last error term. By (2.3, 2.4), both X = R! and X = R sin?(#**!) can be expressed

38

as averages of the form

= Zf Gi, G;) (A.3)

12

From the bound on the 3rd moment in Lemma 7, it follows that E[e2(X — E[X])] = O(n;?),
thus giving the desired result.

A.2 Variance Approximation

Lemma 5. Both the random variables X = R"*' and X = R sin(6%) satisfy

Var[ln(X)] =

Proof. Starting with (A.2), and using the first term of the Taylor series approximation for
In(1 + x) = x + €;(z) now, we have that

In(X) = In(E[X]) + X _BIX] | €1 (X_—M) . (A.4)

where € (z) is the Taylor error term and satisfies ¢;(z) = O(x?). Taking the variance of this,

we arrive at an approximation of Var[ln(X)].

Var[ln(X)] = Var {IH(E[X]) e X E X ta (E[X])]

X—E[X]} [(X—E[X])] (— E[X] X — E[X]

= Var [— + Var |[¢; | ———]| + 2 Cov , €1 :
E[X] E[X] E[X] E[X]

As with the expected value approximation, this approximation for variance is used twice,

once for X = R and once for X = R“!sin?(6*"!) (see Section 2.2), both of which can

can be expressed as a sum as in (A.3). Since €;(z) = O(2?), we have that the terms with
X—-E[X]| _ Var[X]

EX] E[X]?
gives the result of the Lemma. O

e1(z) are both O(n;?) from Lemma 7. Simplifying the first term, Var [

39

A.3 Covariance Approximation

Lemma 6. Both the random variables X = R and Y = R sin?(0"+1) satisfy

Cov(X,Y)

Cov(In(X),In(Y)) = E[X|E[Y]

+O(n;?).

Proof. Using the approximation in (A.4) for In(X') and In(Y), we get the following expression

for the covariance:

Cov(In(X),In(Y))

oy (ln(E[X]) X EX e (XE E[X) Jn(E[Y]) + YE[—;[Y] s (Y - E[Y]))

oo (% o (o) XEE/] o (;;[]51[Y])) e v

= Cov (m,m> + Cov (E[X]’€1 (E[Y])) + Cov (61 (E[X]) ’E[Y]>
o) ()

We get the desired result from the fact that that the error term € () satisfies €;(z) = O(z?)

and from our result in Lemma 8. OJ

A.4 Third and Fourth Moment Bound Lemma

Lemma 7. Let Gi,éi, 1 < i < n be marginally N'(0,1) random variables with correlation
cos(9) and independent for different indices i. Let A = 2 > i F(Gy, G;) be the average over
all n? pairs of some function f : R? — R which has finite fourth moment, E[f (G}, Gj)4] < 00.
Then, the third and fourth central moment of A satisfy

E[(A-E[A)"]=0(n"?), E[(A-E[4)]=0(n"). (A.5)

Proof. We begin by showing the third moment bound. First, we can express E[(A — E[A])?]

40

as a sum in the following way:

n ’ 3
— B[(A-E4)Y = 5 3 B|T[(#(C.Go) B G) |- (A
inizis Lk=1

Note that many of these terms are mean zero. For example, for any configuration of the
indices where there is no overlap between the indices (i1, j1) and the other two index pairs

({i1, 1} N {is, jo, 13,3} = &), we may use independence to observe that

B | 11 (6.0 - E[f(sz,éJm)]
_E [f(Gil, G..) — E[f(G,,, C:jl)]] E f[(f(Gik, Gj.) — E[f (G, @jk)]) =0.

When this happens we say that (i1, j;) is a “reducible point”. Similarly, (i, j2) or (i3, j3) can
be reducible if they have no overlap with the other two index pairs. To control E [(A — E[A])?],
it will suffice to enumerate the number of indices {i1, j1, 92, J2, 73, j3} so that all three points
(i1,71), (i, J2), (i3, j3) are not reducible. We call these “irreducible configurations”.

We now observe that at least one of the points (i1, j1),(i2, j2) or (i3, j3) is reducible
whenever the number of unique numbers is ’Uizl{ik,]k}| > 5. This is because, by the
pigeonhole principle, if there are no repeated or only one repeated number between 6 indices,
then at least one of the 3 pairs (iy, j1),(i2, j2) or (i3, j3) must consist of two unique numbers
and therefore is a reducible point.

Since the irreducible configurations can only have at most 4 unique numbers, the number
of irreducible configurations is O(n*) as n — oo. In fact, a detailed enumeration of the

number of configurations reveals that the number of irreducible configurations is precisely
32(n)4 + 68(n)s + 28(n)s + 1(n);. (A.7)

The leading term is 32 because there are 32 possible “patterns” for how the indices can be
arranged to be both irreducible and contain exactly 4 unique numbers |Uz:1{ik, e} = 4
these patterns are listed in Table A.1. Each pattern contributes (n)s = n(n—1)(n—2)(n—3)

41

possible index configurations by filling in the 4 unique numbers in all the possible ways.
Similarly, there are respectively 68, 28, and 1 pattern(s) for irreducible configurations with
3,2 and 1 unique number(s) in them which each contribute (n)s, (n)s and (n); configurations
per pattern (Here, (n); denotes the falling factorial with & terms).

Since the number of irreducible configurations is O(n*), the normalization by n°® in (A.6)
shows that E[(A — E[A])3] is O(n™?) as desired for the third moment.

The argument for the 4th moment is similar. We write E[(A — E[A])!] as a sum
over iy, J1, %2, J2,%3, J3, 14, ja and again enumerate irreducible configurations. In this case,
once again by the pigeonhole principle any configuration with 7 or more unique points
}U:zl{ik, jr}| > 7 will be reducible. Since there are at most 6 unique numbers, there will
be O(n®) irreducible configurations. A detailed enumeration of all the possible irreducible
patterns and the number of unique elements in each yields that the number of irreducible

configurations is precisely
48(n)s + 544(n)s + 1268(n)s + 844(n)s + 123(n)2 + 1(n);.

The normalization factor of n=® then shows that E[(A — E[A])!] = O(n™2). O

Remark 3. A more detailed enumeration of the 4th moment actually shows that the dom-
wmant terms in the 4th moment correspond to the terms in the 2nd moment written twice,

and asymptotically
E[(A - E[A])"] = 3E[(A -~ E[A]))* + O(n™?).

Here, 3 arises as the number of pair partitions of 4 items, and is related to the fact that

3= E[GY).

Lemma 8. Let Gi,éi, 1 < i < n be marginally N'(0,1) random variables with correla-
tion cos(6) and independent for different indices i. Let Ay = n—IQZ?J f1(Gi,Gy), and let
Ay = n%z:z f2(Gy, Gy), where fi, fo - R2 = R have finite fourth moments, B[f,(G;, G;)Y],
E[f2(G:, G;)Y] < 0. Then,

E[(A; — E[A)])*(42 — E[4])] = O (n7?),
E[(A; — E[A)))2(4; — E[A:])] = O (n?).

42

Proof. We can express E[(A; — E[A;])?(A; — E[Ay])] using sums as follows:
E[(A; — E[A1])*(A2 — E[Ay])]

_ % n E [H (/1(Gin. Gi) = BLA(Ga, G5 (fo(Giyy Gi) = BLE(Gy,, Gy

By the same argument as in Lemma 7, we can show that the number of nonzero terms in the
above summation is O(n?) as n — oco. Thus, we have that E[(A; — E[A1])?(A; — E[Ay])] =
O(n~?). We can also show that E[(A; — E[A;])?(4; — E[45])?] = O(n™?) by the same

arguments. O

), (d,a)} 8 patterns

—~—
8
ol
=
Q
—
X
—~—
L
&
—
o
Q

} 8 patterns
poxo A
pox A

Table A.1: All 32 irreducible patterns using exactly 4 unique index values a,b,c,d. For
example the pattern (i1, j1), (i2, j2), (i3, j3) = (a,b), (a,), (a,d) represents all configurations
where i1 = 15 = 73 and the j’s are all unique and different from 7. For each pattern, there
are (n)y = n(n — 1)(n — 2)(n — 3) configurations by filling in a, b, ¢, d with unique numbers
in [n|. These are the dominant terms in (A.6).

)
,(b,a)} x| (¢, d),(d,c)

) b} x {(a,¢),(c,a)} 8 patterns

) (¢, d), (c,b)

} 8 patterns

A.5 Expected Value Calculations

In this section, we derive the formulas for E [R"] and E [R"!sin*(0*T!)]. We use J,; to

represent J,,(6%). Note that E[p?(G)] = 1, E[¢*(G)] = 2 (Proof in Lemma 1).

29

A.5.1 Calculation of E [REH}

First, we apply the identity as in (2.4):

E [R] = (3)253

Whenever 7 = j, taking the expected value will give us a J5 5 term. When i # j, the expected
value of this term will be E[p?(G)]? = 1. Since i = j happens n, times, and therefore i # j

happens n? — n, times, we arrive at the following expression:

2?2 1 4]y q —1
E [RZ_H} = (TL_> (ngJQ’Q + (n? — ng) (Z)) = % + 1.
l l

A.5.2 Calculation of E [R*! sin?(6*+1)]
Applying the identity (2.3), we get

_n[

E [R“'sin?(911)] = n%E Z <90(Gi)g0(éj) _ @<Gj)¢<éi)>2
- 2B |2 (SG)(G) 26(G0p(Ge(Gr)e(G) + G)

In the case where ¢ = j, the expected value is equal to 0. Thus, we only need to consider
the case where i # j, which happens n? — n, times. When i # j, the expectation of
(G (G p(G)p(G;) is J?,, and the expectation of 0*(Gi)p?(Gy) is L. All together, we
have

E [R* sin?(01)] = (%) (2 — ny) (1 Y 1) _ (= DA 45y

ng 4 Ny

A.6 Variance and Covariance Calculations

In this section, Var [R‘*!], Var [R“*!sin*(0**!)], and Cov (R“!sin®(9**!), R**!) are eval-
uated. We use J,;, to represent J,;,(0°). Note that E[p?(G)] = 1, E[¢*(G)] = 2. We will
see that there are simple functions fi, f> : R> — R so that all of the variance and covariance

calculations can be expressed as sums over i1, 1, i9, jo of the form

ni?z (B [A(C G £l G G)] ~ B [1(G.)] B [2(GnG)]) . (A8)

12,J2

where the sum goes over index configurations (iy,), (ia, j2) € [n¢]*. We will use this form to

organize our calculations of the variance and covariance formulas. The strategy is to evaluate

44

each term in the sum (A.8) individually.

Since the random variables {G;, éi}?:l are exchangeable, the only thing that matters is
the “pattern” of which of the indices i1, 1, 72, jo are repeated versus which are distinct. For
example, there will be n index configurations where i; = j; = iy = jo are all equal. All
n of these give same contribution. There are (n), = n(n — 1)(n — 2)(n — 3) configurations
where iy, j1, 19, jo are all distinct. Knowing which indices are repeated/distinct allows us to
evaluate the corresponding term in (A.8). We use the following formal notion of a pattern

to organize this idea of repeated versus distinct indices.

Definition 3. A pattern for (i1, j1), (ia, j2) is a subset of all possible index configurations
(i1, J1), (i2, jo) € [n]* represented by an assignment of each index to the letters a,b, c,d. Each

letter a,b, c,d represents a choice of unique indices from [n].

For example, the pattern (i1, j1), (i2,j2) = (a,a), (a,a) represents the set of all index
configurations where all indices are equal and the pattern (i1, j1), (i2, jo) = (a,b), (¢, d) rep-
resents the set with all indices unique. The pattern (iy, j1), (i2,72) = (a,b), (a, c) represents
all configurations where i; = i5 and ji, jo are unique and different from ¢; = i5. For this
pattern, there are (n)3 = n(n — 1)(n — 2) configurations by filling in a, b, ¢ with unique num-
bers in [n]. More generally, for a pattern with & letters, there are (n); configurations that
fall into that pattern.

Fortunately, when enumerating (A.8), many patterns have no contribution and can be

ignored. We formalize this in the following definition.

Definition 4. We say that the configuration of indices (i1, j1), (i2, j2) is reducible if {iy, j; }N
{ia, 72} = @. Otherwise, the index configuration is called irreducible. A pattern is called

reducible if all index configuration in that pattern are reducible.

By the independence of the random variables fi(G;,,Gj,) and f3(Gi,, Gj,), whenever
(i1,71), (i, j2) is reducible, we see that the corresponding term in (A.8) completely vanishes!
Therefore, to evaluate (A.8), we have only to understand the contribution of irreducible
configurations. The irreducible configurations can be organized into irreducible patterns. For
example, the pattern (a,b), (c,c) is reducible (since formally {a,b} N {c} = @) and so any
configuration from this pattern has no contribution in the expectation.

There are 11 irreducible patterns. (All these patterns are listed as part of Table A.2.)
The expected value of the terms for each pattern will give a contribution that is expressed

in terms of the J,; depending on the details of exactly which indices are repeated. Then

45

by enumerating the number of configurations in each pattern, we can evaluate (A.8). This

strategy is precisely how we evaluate each variance/covariance in this section.

A.6.1 Calculation of Var [RHl]

First, applying the identity in (2.4), we get

ij=1
16 & i
= n_zl E Z 902(G11)902(GJ1)902<G12)902(GD) —E Zl 902(Gi)902<GJ)
21,71)=

12,52

Var[Rt!] follows the form of (A.8), with f(G;,G;) = fo(Gy, Gy) = @*(Gy)e*(G,). We
then evaluate the contribution from each irreducible pattern in Table A.2. Combining all
these cases and simplifying based on powers of nig, we arrive at the following expression for
Var [R"]:

4 16 5 5 16 9

¢

¢ 8 ¢ 8

A.6.2 Calculation of Var [R*! sin®(6*+1)]

Applying identity (2.3), we can express Var[R“"! sin?(#“"!)] as

4715

Var [R"! sin?(6""")] = E (£)4Var [i (w(@)@(éj) — @(Gj)gp(@i)>2

ij=1

Note that we can express Var[R sin?(6°1)] as in (A.8) by letting f,(G;, G;) = f2(Gi, G;) =
(0(G)p(G)—p(G;)p(G:))? We then evaluate the contribution from each irreducible pattern

in Table A.3. Combining all these cases and simplifying based on powers of nié, we arrive at

46

Var[R*!] Calculation

| (i, 51) | (2, j2) | B[fi(Giy, G)] | Elf2(Giyy Gi,)) | E[fi(Giy, Gj) fo(Gy, G
(n)1 (a, (1) ((1, CL) J272 ngg J474
(a.b) | (a.b) o N (3)°
oo | 6o (3) (3) Py
(a,a) | (a,b))
(v) I 3
Ea, a)) ((b, a; %JM
a,b a,a 9
z a2
(b,a) | (a,a))
(a,b) (a,c) 3 112
(a7b) (07 b) 1\2 1\2 ’ (2)
()3 (3) (3)
(a,b) (c,a) N
(3) Joc
(a,b) (b, c)

Table A.2: Var[R"'] calculated in the form of (A.8) with f,(Gi,G;) = f(Gi,G;) =
¢2(Gi)g02(éj). The contribution from all 11 possible irreducible patterns of the indices
are shown.

the following expression:

8
Var [R“'sin?(6°)] = — (—8J{{1 +8J7 oo +4J7 —8J1 151 + Jop + 1)

Ty

2
+ = (80J11 — 96JF 1 Joo — 40J7 1 4 961151 + 2405, — 12J55 — 32J5 | +5)
¢

2
+ = (—48J;{1 + 64JilJ2,2 +24J7) — 64J11J5, — 241]2272 + 850 +32J5, — 9).
¢

A.6.3 Calculation of Cov (R*!sin?(6¢+1), R™)

Cov (R*!sin(9"*1), ') = B [(R™!)”sin(0")| — B[R sin?(6°1) B[R]
Applying known identities (2.3, 2.4) derived in Appendices A.7 and A.8, we can express this

47

Var[R!sin?(#*+1)] Calculation
| (i, 41) | (2, 52) | BIf(Giy, G3)] | Elf(Giy, Gj)] E[f(Gi,Gj)[(Giy, Gy,)]
a,b
b

6J3, —8J3, + 3

S

)
)
)

a,c

1 2 1 2
3 —2Ji, 3 —2Ji;,
c

S

4J2,2J12,1 —4J31J11 + %Jzz + %

=y

&)

b, c

(
(
(
(¢, a)
(c;b)
(b;c)

Table A.3: Var[R sin?(#*+")] calculated in the form of (A.8) with f,(Gi, G;) = fo(Gs, G;)
= (p(Gy)o(G;)—p(G,)p(Gy))?. The non-zero contribution irreducible patterns of the indices
are shown. Note that because fi(G;,,G;,) = 0 when 4; = j; and fo(Gy,, Gj,) = 0 when
i = ja, there are 5 irreducible patterns (of the possible 11) that have zero contribution and
are not displayed in this table.

in the form of (A.8), where f,(Gy,G;) = (0(Gi)p(G;) — ©(G)(G)))?, and fo(Gy, G;) =
©*(G)*(G;). Table A.4 shows the calculation of all the irreducible patterns. Collecting all

cases and simplifying based on powers of niz gives:

1
Cov (R™'sin?(0""), R"™") = — (16J7, — 32J11J51 + 822 + 8)

Ty

1
+F (32J7 1 Jo2 — 40J7 1 + 961151 — 32J1 1 T35 + 16.J5 5 — 32J55 — 32J5, + 16J42 + 10)
¢

1
+—5 (2407, = 32J7 1 Jap — 64J1 151 + 321155 — 1605, + 24005 + 32J5, — 16J45 — 18) .
n[K b b b

A.7 Derivation of Useful Identities - Equations 2.1, 2.2

Let G € R" be a Gaussian vector with iid entries G; ~ N(0,1). Then, by standard properties
of Gaussians, the function f : R™ — R given by f(z) = (G, z) is a Gaussian random variable.
Further, f(z) ~ N(0,|z|?) for all z € R", and for any two vectors z,,zs € R™, the joint

48

Cov(R™!, R sin?(#*1)) Calculation

(ilajl) (i27j2) E[fl(Giuéh)] E[f2(Gi2>éj2)] E[fl<Gi1>Gj1)f2(Gi2’éjé)]

(CL?b) (b7 b) Joo Juo —2J11J33

@b | @a) | B
(1)2

(a;b) | (a,b)

Ea, b; Eb, a; % B 2(]1271

a,b a,c 2 2

1 T32—2J5,+ (3

(a,b) | (c,a) g §
(n)s

(a,b) | (b;c)

(a,b) | (c,b)

Table A.4: Cov (R“'sin?(0*1), R*!) calculated in the form of (A.8) with f1(G;, Gj) =
((G)p(Gy) = 0(G)e(G:))?, and fo(Gi, G;) = ©*(Gi)@*(G;). The non-zero contribution
from irreducible patterns of the indices are shown. Note that because f1(G;,,G;,) = 0 when
i1 = j1, there are 3 irreducible patterns (of the possible 11) that have zero contribution
which are not displayed in this table.

distribution of f(z,), f(xg) is jointly Gaussian with

f(za 2o |? (za, T
(Ta) NSz, S(razs) [zall® (2o, 2p) |

f(wp) (Tas) |lzpl?

where ¥(z,,) is sometimes called the 2 x 2 Gram matrix of the vectors z,, z3.
In the setting of our fully connected neural network, any index i € [nyy1] in the vector of

21 is actually the inner product of ¢(z¢(x)) with the i-th row of the weight matrix W*+!:

2

£+1 —
4M@) =[5

2

(Wi o2 (2))).

Note that each row VVfJrl is a Gaussian vector, so the previous fact about Gaussians applies

{+1

and we see that the entries of 2°7" are conditionally Gaussian given the value of the previous

layer. By the previous Gaussian fact, we have that z/!(z,), 277! (2;5) are jointly Gaussian

49

with

l+1 2 V4 l
2" (Za) o | il (k. ©5)
~N o= 1 =0,k
Ny
2 (2g) (05,08 sl

where we use K to denote the 2 x 2 covariance matrix. K* is precisely the 2 x 2 Gram matrix
of the previous layer ¢!, ¢ scaled by 2/n, and its entries K/, for i € {a, 8}, j € {a, B} are
actually averages of entries in the previous layer

2
Ki{j = 901790‘7 2290 Zk‘ xl Zk(aj]))

Moreover, in the weight matrix W, the i and j** rows (Vforl and W’f“, respectively)

/+1

are independent. Therefore, all entries of 27" are identically distributed and conditionally

independent given ¢(2¢). From this fact, we can equivalently write the entries explicitly as

2 2 R
e+1 —JZnG, 0+1 = 2N G A9
@) = G 2) = S 151G (A9)

where G;, G; are marginally A(0,1) variables with covariance Cov(G;, G;) = cos(8) and
independent for different indices. This formulation precisely ensures that the covariance
structure for the entries is exactly what is specified by the covariance kernel K.

With this representation of 2/ (x,) and 2! (x4), we can apply ¢(-) to each entry. By
using the property of ReLU ¢(Azx) = Ap(z) for A > 0 to factor out the norms, we obtain

2 (@ =\ H%Hso oz (2p)) =1/~ Hs%\lso (A.10)

Taking the norm/inner product of the vector now yields (2.1-2.3) as desired.

50

A.8 Cauchy-Binet and Determinant of the Gram Ma-
trix - Equation 2.3

To prove this identity, we begin with the fact that

HSijl”Z <SD£+1, (,0€+1>
a2 05 IPsin® (041 = det s
W5 o5t et

By the Cauchy-Binet identity, we can express the determinant as

IS M2 (e 5™)

“ “ {41, (+1 {41 _0+1

et 041, 0+1 041712 B Z (%z g03’?23 —90]-;; %E) . (A.11)
<900¢+ 7905 > HQOB H 1<i<j<ny

Due to the fact that the summand is equal to 0 when ¢ = j, we can equivalently take the
sum over all indices i,j € [n,] and halve the result. We can also express layer ¢ + 1 using

the following conditioning on the previous layer

2 2 .
G o(GY) o = o ().
ettt = [kl oG, ot =/ S Iblle(G)

Applying these facts to our expression in (A.11), and dividing both sides by [|¢%||*[|¢5]|?, we

get our desired result.

A.9 Infinite Width Update Rule

Lemma 9. Let f(x) be a feed forward neural network as defined in 2.1. Conditional on
the value of 0° in layer ¢, the angle 6° between inputs at layer ¢ of f follows the following

deterministic update rule in the limit n, — oo.
cos(0T) = 2.J,1(0°).

Remark 4. Note that a more general proof of this result appears in prior work [11] which
allows one to take the layer sizes ny,no,...,ng — 00 tn any order, rather than one layer at

a time as we prove here.

51

Proof. We begin with the identity (2.2), and use the inner product to introduce cos(6*!),
|90a\| H<P [ES
e Z 2¢ = {pa 5) = loa g llcos(87).

Applying the identities in (2.1) to |5 (| and |5], we get

2 T

202(G; ngﬁ‘ ZQgp) cos(6°1),

R

Ty

AR SR
L lTPENT 20(Gh)p(Gy) = a
- ;::1 PlGIAG) = |

i=1

— %Zs@(@)sﬁ(@i) = \ %Zsﬂ(Zs@) cos(0°).

1 1 .
li = i - 2(G), | — 2(Gs g+l
WIL“OO<WZ%0) Jm (D@ (G| D @G cos(0)

92

Appendix B

B.1 Derivation of Lower-Order J Functions - Proof of

Proposition 2

Proof of Formula for Jyo,. We find a differential equation that Jy satisfies and solve it to

obtain the formula. First note the initial condition Joo(0) = E[1{G > 0}] = 3. To find

Jo,0(0), we take the derivative inside the expectation and have by the chain rule that

Joo(0) = E[1{G > 0}1'{G cos § + W sin§ > 0}G](—sin)
+ E[{G > 0}1'{G cos§ + W sinf > 0} W] cos 6.

Applying the change of variables as in (4.11), we have

Joo(0) = E[(Z cos0 4+ Y sin@)1{Z cos§ + Y sin > 0}1'{Z > 0}](—sin6)
+ E[(Zsinf — Y cos0)1{Z cosf + Y sinf > 0}1'{Z > 0}] cos ¥

—sin cos

= E[(Y sin6)1{Y sinf > 0}] +E[(—Y cos0)1{Y sinf > 0}]

V2r oz
= (—sin?6 — cos®))E[Y 1{Y > 0}]\/%7 = _%7

where we have used (4.8) to evaluate the integrals involving 1'{Z > 0} and E[Y1{Y >
0} = (v2m)~! from Lemma 1. We now have Jj,(f) = —5= with initial condition given by

Joo(0) = 3. Solving this differential equation gives the desired result. O

53

Proof of Formula for Jy o. Here we use the Gaussian integration-by-parts strategy (4.7 -4.8).

Ji10(0) = E[G1{G > 0} 1{G cos + W sin§ > 0}]
=E dg (1{G > 0} 1{G cos @ + W sin 6 > 0})

=E[1I'{G >0} 1{G cos 0 + Wsinf > 0} + E[1{G > 0} 1'{G cos§ + W sin§ > 0}] cos 6.

By using the change of variables as in (4.11) on the second term, we arrive at

Ji1o(0) = E[1{W sin6 > O}]L + cosOE[1{Z cos O + Y sinf > 0}1'{Z > 0}]
V2T
1

- 5— + cos E[1{Y sin§ > 0}]

cos@ 1 14 cos6

11
T2V 2 Vor o 2vom

1
s
Proof of Formula for Ji ;:

Ji11(0) = E[G(G cos @ + W sin0)1{G > 0}1{G cos§ + W sin6 > 0}]
= Elcos 0 1{G > 0}1{G cos + Wsin6 > 0}]
+ E[(G cosf + Wsin0)1'{G > 0}1{G cos § + W sin 6 > 0}]
+ E[(Gcosf + Wsin6)1{G > 0}1'{G cosf + W sin6 > 0}] cos 6

1
= COS 9]070 + E[W sin 6 1{W sinf > O}]\/? + E[Zl{ZCOS@ + Y sin 0}1/{2 > O}]
s
1 sinf + (m —) cos 6
—+0=)
V2 2

= cos0.Jyo + sin OE[p(W)]

B.2 Proof of Explicit Formulas for J, o and J,

Once the recursion is established, the formula for both J, and J,; is a simple proof by

induction.

Lemma 10. Let J)§ be the recursively defined formula, and let J)'s be the explicitly defined

o4

formula for J, o, namely

coon—1
sin" ™" @ cosf
;?OC = ()Jrec20 + c —d2 (n — 2)' !, Jrec = JLO, JS’%C = ‘]0707
7 1NO

cos =D
Jeﬂ?p . (TL— 1) Jnmod20 + Z —(-) sin’@
7 Cnmod 2 . 2! !
i#n(mod 2)
0<i<n

Then, J;5 = Jy¢ for alln > 0.

erp

Proof. Let S,, n € N, n > 2 be the statement J;§ = J.'¢ and J; o = J; % 5. We prove S,

is true by induction. The base case S; is true because,

sin 6 cos ¢ cos 6 sin
e =02-1)Joo+ ——2-2)=Jyo+ ———,
€2 mod 2 27
!t sin*~1¢ cos sin @
Jog =2 =DJ 0y —F——(2i =2/ ——— = _—
(2= D Joo + cos 222—1)"(Z M= 00t T
and the fact that J{§ = J P is trivial. Induction step: Assume S, is true. To prove S, 1,
we have only to show that J w0 = 560 To do this, we separate the last term of the sum
to get
o cos =
Jn+p1,o =0 Jont1) mod 2,0 + PO —(5 ') sin’ 0
(n+1) mod 2 1Z(n+1)(mod 2)
0<i<n—1
0 -
+n!! €08 (n—1) sin" 6.
C(n+1) mod 2 n!!
Because the parity of n+ 1 and n — 1 are the same, and using n!!= n(n — 2)!! we recognize

the first term as nJ:™" o- S0 after simplifying the last term, we remain with

i
Ty =iy LRy i g,
C(n+1) mod 2 ’

by the induction hypothesis. This completes the induction. O]

Lemma 11. Let J}% be the recursively defined formula, and let J;" be the explicitly defined

%)

formula for J, 1, which is given by

Jio(0)

!

T (0) = (n— D | o wmoa 2,1 + cosd Z

i#Zn(mod 2)
0<i<n

rec

rec .__ rec .__
’I’L,l - (TL — 1)(]”_2’]_ + COS ec]n_]_70, J071 = JO,]_, J171 = ‘]1,1

Then, J}5 = J;*¥ for alln > 0.

n,l

Proof. Let S,, n € N, n > 2 be the statement JJ5 = J;*/". We show that the base case S5

n,

is true.

(1 + cos6)?

¢ =(2—-1)Joq1 +cosbJig=(14+cosO)J o= ,
2,1 () 0,1 1,0 () 1,0 2\/%

JiO JlO (1+COSG)2
JEP = (2 — D) | Jo mod 21 + cos 8 — | = Jog +cosf—+ = :
2,1 () 2 mod 2,1 iﬁ(zm;d 2 ! 0.1 1! 2427

0<i<2

Under the assumption that S, is true, we show that S,,,; is also true.

<~

00

Tt =t Tz beos0 30

i#Z(n+1)(mod 2)
0<i<n+1

J; I
=n!!| Jin41) mod 21 + cos O Z : 9 4l cos 9—"?

! n!!
iZ(n+1)(mod 2)
0<i<n—1

Ji
=n(n—2)!" | Jm-1) mod 2,1 + cos b E z'_? + cosB.J,,0
i#(n—1)(mod 2)
0<i<n—1

=ndp_11 +coslJ, o

__ 7qrec

- “Yn+1,1

56

B.3 Bijection between Paths in Graphs of J Functions
and the Bessel Number Graphs P,Q

Let Gy« = (Vj., EJ.) be the graph of J;p as in Figure 4.2c. Similarly, let Gp = (Vp, Ep) and
Gq = (Vg, Eg) be the graph of the P and) matrices up to row a, respectively, as in Figures
4.2a, 4.2b. We define a map A : Z% x Z* — 7Z? as follows: Let ((i,7), (m,n)) € Z* x Z*, 0 <
1<a, b—a+m < j<b. Then define A by

M(i,5), (m,n)) = (i =m,j —n), A((i,]), (m,n)) = (i+m,j+n).

The function A can be used as a map between vertices of graph G« to vertices of graph
Gp or Gg. Let m = (v1,v9, ..., 051, %) be a path in G- from vertex vy, = (m,n) to vertex
vy = (a,b), where v; € Z?, 1 <i < k is a vertex on the graph. X extends to a map on paths,
A, defined by

A((v1,v2, oy V1, 0k)) =M1, v1), A(ve, v1), ooy M(Vk—1, V1), AUk, v1)),
A (1,2, oy U1, vk)) =(A (o1, v1), A g, v1)y e, A (Up— 1, v1), A (g, 01)).
Now, let I'j-(a,b,m,n) be the set of all paths in the graph of J* from J . to J;,, and let
Cp(a,b,m,n) be the set of all paths in the graph of P from P(0,0) to P(a — m,b —n) =
P(A((a,b), (m,n))). For example, I';«(6,8,0,4) is the set of all paths which run from Jgg to
Jg 4, and I'p(6,8,0,4) is the set of all paths which run from P(0,0) to P(6,4).

With these definitions, A : I'j<(a,b,0,n) — I'p(a,b,0,n) is a bijection. An illustration
of all paths 7 € T1(6,8,0,6) and the corresponding paths A(w) € I'p(6,8,0,6) is given
in Figure B.1. Similarly, if we let I'g(a,b,m,n) be the set of all paths from Q(0,0) to
Qla —m,b—n) = Q(\((a,b), (m,n))) then A : T'j(a,b,1,n) = Ig(a,b,1,n) is a bijection
(see Figure B.2 for an illustration). This bijection establishes the equality of the weighted
paths claim in (4.21).

57

6 | Jis Jis Jis Jis Jis Jis
1 1 1
5 5 | J5q 5 | Jig 5 | J5a J5q Ji Jiq
1
4 JZS JX,G Ji,s\ . Ji,s Ji‘s . JI‘G Ji,g 4 JZ,G Ji,g 4 JI,G Jz,s JZG
3 3 =]§,7 J37 '];,7] J?fj J§,7) =]§,7 3
2 Jg,s . ‘]‘;,6 Jz*,s 2 Jz*,s J3s 36 Jz*,s 2 Jz*,e J;,s J;,ﬁ J;,S ‘]‘;,6
1 Jiz Jiz Jiz 1 Jiz Jiz 1 Jiz 1
1 1 1

0 | Jos Jos | | Jos Jos | | Jos Jos | | Jos Jos | | Jos Jis Jos o6

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 |P(,0) P(0,0) P(0,0) P(0,0) P(0,0) P(0,0)

1 1 1
N
1 P(1,1) P(1,1) 1 |P(1,1) P(1,1) 1 |P(1,1) 1 |P(1,1)
1
2 |P@2,0) P(2,2)| |P2,0)] |2 |P2,2)| |P(2,0) P22,2)| |P2,0)| |2 |P@22)| |PE20) P(2,2)| |P(2,0) P(2,2)
1 1
3 P3| |3 P(3,1) P(3,1) P(3,1) P(3,1) 3 |P(3,1)
1 1
4 |P4,0) P(4,2)| |P(4,0) P(4,2)| |P(4,0) P(4,2)| |P(4,0) | |P4,2)] |P(4,0) | |P4,2)] |P®4,0) P(4,2)
1
5 P(5,1) 5 PG| |5 PG| |5 P(5,1) P(5,1) P(5,1)
\1‘ 1 1

6 |P6,0) P(6,2)| |P(6,0) P(6,2)| |P(6,0) P(6,2)| |P(6,0) P(6,2)| |P(6,0) P(6,2)| |P(6,0) P(6,2)

Figure B.1: Top: All paths 7 € I";«(6,8,0,6). Bottom: All paths A(r) € I'p(6,8,0,6). The
paths are lined up so that for each path 7 in the top row, A(m) appears in the bottom row.

58

6 | Jis 6 | Jis 6 | J6s)

5 5| J5r 5 5| J57 5 57

4 | Jis Jie 4 | Jig) Jie 4 | Jig 1| Jieg

3 ER 3 37 3 J5q

2 | Jog . I3 2 | J5s 2 | J5g 2 | J5s 2 | Jog

1 Jiz 1 Jiz 1 iz

0 |Jos Ji6 0 | Jis T 0 | Jis 6.6
0 1 2 0 1 2 0 1 2

0]Q0,0)) 0 Q0,0 0 |Q(0,0)

1 Q(1,1) 1 2 |1Q(,1) 1 2 |1Q(1,1)

2 1Q(2,0) 3 1Q(2,2) 2 Q2,0) Q(2,2) 2 Q2,0 Q(2,2)

3 Q(3,1) 3 Q(3,1) 3 41Q(@3,1)

4 |Q4,0) 5 1Q(4,2) 4 |Q(4,0) 5 1Q(4,2) 4 |Q(4,0) I Q(4,2)

5 Q(5,1) 5 Q(5,1) 5 Q(5,1)

6 |Q,0) Q(6,2) 6 |Q@,0) Q(6,2) 6 |Q6,0) Q(6,2)

Figure B.2: Top: All paths 7 € I';+(6,8,1,7). Bottom: All paths A(r) € I'(6,8,1,7). The
paths are lined up so that for each path 7 in the top row, A(m) appears in the bottom row.

59

Appendix C

C.1 P and @ numbers

The P and @ numbers were introduced in [16] and can also be thought of as infinite matrices

with elements in the a* row and b column given by P(a,b) and Q(a, b), respectively.

01 2 3 456 0 1 2 3 456
0/1 0 0 0 0 00 - 0/1 0 0 0 0 00 -
1o 1.0 0 000 - 1o 1.0 0 000 -
21 0 1 0 0 00 - 2[2 0 1 0 0 00 -

3o 3 0 1 000 - 3o 5 0 1 000 -
P=4ls 06 0 100 @=4ls 09 0 100 - (C.1)
5o 150 100 10 - 500 33 0 14 0 10 -
615 0 45 0 150 1 - 648 0 87 0 20 0 1 -

C.2 Recursions for the P and Q numbers - Proof of

Lemma 3

Earlier work established the following properties of the P and () numbers.

60

Theorem 3 (Kreinin [16]). The elements of the matrices P and Q) satisfy

P(a,b) =a-P(a—1,b—1), a>1,1<b<a, (C.2)
(a+1b) Pla,b—1)+ (b+1)- P(a,b+1), a>0,1<b<a, (C.3)
Q(a,b) = P(a,b) + (b+1)-Q(a—1,b+1), a>1,1<b<a, (C.4)
Qa,b) =a-Q(a—2,b) +Q(a—1,b—1), a>21<b<a. (C.5)

Of Lemma 3. Equation (C.3) tells us that P(a,b) = P(a—1,b—1)+ (b+1)-Pla—1,b+1)
fora> 1,1 <b<a—1, while equation (C.2) tells us that P(a —1,b+1) = (('Z:; -P(a—2,b)
for a > 2,0 < b < a— 2. Putting these together, we get the following recurrence equation

for P(a,b):

P(a,b) =Pla—1,0—1)+ (b+1) (({;;i)) -P(a—2,b))

=(a—1)-Pla—2,b)+ Pla—1,b—1),

which holds for @ > 3,1 < b < a — 2. Further, looking at equation (C.5), we see that the
recursion for the ¢) numbers is very similar to that of the P numbers, but with a coefficient
of a rather than (a — 1). This establishes Lemma 3. O

61

Appendix D

This section details the architectures of the 45 different neural networks used to produce

Figure 3.1.
4 | Depth Avg. # Parameters Avg. Test Accuracy £+ Standard Deviation
Width | (F)MNIST | CIFAR MNIST | FMNIST | CIFAR

1 2 50 58880 165790 | 0.924 £ 0.007 | 0.79 £ 0.02 | 0.211 + 0.029
2 2 85 57350 135510 | 0.837 £ 0.051 | 0.709 £ 0.028 | 0.276 £ 0.011
3 2 200 19930 54250 | 0.878 £ 0.009 | 0.721 4 0.098 | 0.163 + 0.048
4 2 25 138300 201600 | 0.94 + 0.004 | 0.812 4 0.009 | 0.229 + 0.025
5 2 125 31725 88925 | 0.89 £ 0.005 | 0.768 + 0.013 | 0.199 + 0.027
6 3 25 43990 114550 | 0.928 £ 0.008 | 0.812 £ 0.013 | 0.167 £ 0.022
7 3 50 62830 173280 | 0.916 £ 0.002 | 0.79 £ 0.012 | 0.224 + 0.019
8 3 100 59700 96756 | 0.952 + 0.004 | 0.839 + 0.003 | 0.27 £ 0.016
9 3 67.67 87200 309900 | 0.924 4+ 0.006 | 0.799 + 0.011 | 0.281 4+ 0.011
10 3 50 17310 189100 | 0.553 4+ 0.181 | 0.599 + 0.119 | 0.263 + 0.022
11 4 30 369400 366150 | 0.877 + 0.052 | 0.757 4+ 0.026 | 0.192 4+ 0.029
12 4 75 99400 105060 | 0.957 £ 0.003 | 0.842 + 0.006 | 0.23 £ 0.025
13 5 21 74700 51630 | 0.931 £ 0.005 | 0.811 + 0.009 | 0.146 + 0.029
14 6 55 8840 976400 | 0.715 4+ 0.088 | 0.569 4 0.146 | 0.337 £ 0.008
15 6 87.5 169400 398200 | 0.949 4+ 0.008 | 0.833 4+ 0.007 | 0.332 £ 0.018
16 10 10 79020 180010 | 0.951 £ 0.003 | 0.832 4+ 0.01 | 0.278 + 0.018
17 10 100 64850 122050 | 0.939 + 0.004 | 0.824 + 0.008 | 0.262 + 0.059
18 10 200 54170 262060 | 0.933 4+ 0.005 | 0.81 + 0.014 | 0.335 £+ 0.016
19 10 17.5 49920 1002300 | 0.794 4+ 0.052 | 0.648 4+ 0.106 | 0.184 4+ 0.026
20 11 34.55 518800 31720 | 0.955 + 0.006 | 0.835 + 0.011 | 0.14 £ 0.037

Table D.1: Summary of the architectures of the first 20 neural networks used in Figure 3.1,
as well as their performance on the test datasets. Note that the number of parameters differs
between the (F)MNIST and CIFAR-10 datasets due to the fact that CIFAR-10 images are in
colour requiring 3 colour channels, while the MNIST and FMNIST images are in grayscale.
This table is continued in Table D.2.

62

4 | Depth Avg. # Parameters Average Score + Standard Deviation
Width | (F)MNIST ‘ CIFAR MNIST ‘ FMNIST ‘ CIFAR

21 11 35 21100 269195 | 0.93 4 0.005 | 0.823 + 0.007 | 0.363 £ 0.016
22 13 42 36420 328200 | 0.91 4 0.008 | 0.789 4+ 0.01 | 0.364 £ 0.016
23 15 30 41844 174100 | 0.92 £ 0.004 | 0.805 4 0.011 | 0.349 + 0.015
24 15 50 13860 235650 | 0.909 £+ 0.005 | 0.8 £ 0.012 0.328 + 0.02
25 15 75 16580 206848 | 0.927 £ 0.003 | 0.823 + 0.007 | 0.359 £ 0.009
26 16 35 42200 159100 | 0.943 + 0.004 | 0.838 4 0.004 | 0.343 £ 0.021
27 16 22.5 198800 656400 | 0.963 £ 0.003 | 0.845 4+ 0.01 | 0.37 & 0.016
28 20 25 94900 323700 | 0.955 £ 0.002 | 0.843 &+ 0.006 | 0.367 £ 0.006
29 20 50 60416 62340 | 0.951 4 0.003 | 0.837 £ 0.005 | 0.163 4+ 0.058
30 20 37.5 44700 156600 | 0.948 + 0.003 | 0.834 4 0.008 | 0.346 £ 0.028
31 23 31.30 194550 598200 | 0.927 £ 0.005 | 0.788 + 0.008 | 0.17 4+ 0.004
32 25 15 64050 48180 | 0.951 4+ 0.002 | 0.84 4 0.004 | 0.186 + 0.071
33 25 75 55160 125880 | 0.899 + 0.014 | 0.748 4 0.033 | 0.274 £ 0.048
34 25 150 53760 64390 | 0.782 4 0.077 | 0.676 £ 0.064 | 0.206 = 0.041
35 28 35.71 74715 78300 | 0.953 £ 0.001 | 0.844 + 0.001 | 0.244 4+ 0.075
36 30 15 60860 152380 | 0.819 + 0.08 | 0.719 4+ 0.033 | 0.17 £ 0.02
37 30 30 18630 145280 | 0.862 4+ 0.08 | 0.772 4+ 0.017 | 0.168 %+ 0.02
38 30 100 34360 146680 | 0.941 4 0.003 | 0.826 4 0.009 | 0.165 £+ 0.022
39 30 26.67 659100 118560 | 0.932 + 0.014 | 0.785 4 0.011 | 0.175 £ 0.007
40 30 31.67 18435 52755 | 0.313 4 0.131 | 0.349 £ 0.109 | 0.158 4 0.026
41 35 40 86160 276600 | 0.753 £ 0.074 | 0.586 4+ 0.11 | 0.148 £ 0.029
42 35 75 250800 450525 | 0.725 4+ 0.163 | 0.608 £ 0.077 | 0.165 + 0.007
43 40 50 137200 251600 | 0.522 £ 0.141 | 0.513 £ 0.089 | 0.167 £ 0.007
44 40 75 278925 422400 | 0.467 £ 0.123 | 0.466 &= 0.09 | 0.161 £ 0.022
45 50 50 162200 177680 | 0.242 4 0.064 | 0.22 & 0.042 | 0.161 &+ 0.019

Table D.2: Continuation of Table D.1 for networks 21 through 45.

63

Hidden Layer Widths

50, 50

85, 85

200, 200

20, 30

100, 150

25, 25, 25

50, 50, 50

100, 100, 100

64, 75, 64

75, 50, 25

40, 40, 20, 20

50, 100, 100, 50

15, 15, 15, 30, 30

80, 70, 60, 50, 40, 30

25, 50, 75, 100, 125, 150

10, 10, 10, 10, 10, 10, 10, 10, 10, 10

100, 100, 100, 100, 100, 100, 100, 100, 100, 100

200, 200, 200, 200, 200, 200, 200, 200, 200, 200

20, 20, 20, 20, 20, 15, 15, 15, 15, 15

55, 30, 30, 30, 30, 30, 30, 30, 30, 30, 55

40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30

24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60

30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

—_
S| ©| ool | o Ut x| W po| =Tk

—_
—_

—_
[\

—_
w

—_
N

—
(S

—
(=]

—
N |

—_
(0]

—_
Ne}

DO
=)

[\
—

]
[\]

[\)
w

[\
=~

(\]
ot

Table D.3: Ordered list of hidden layer widths for the first 25 networks used in Figure 3.1.
This table is continued in Table D.4.

64

Hidden Layer Widths

26 | 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20

27 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

28 | 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25

29 [50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50

30 | 45, 45, 45, 45, 45, 40, 40, 40, 40, 40, 35, 35, 35, 35, 35, 30, 30, 30, 30, 30

31| 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20

32 | 15,
15, 15

33 | 75,
75, 75

34 | 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150,
150, 150, 150, 150, 150, 150, 150, 150

35 | 25, 25, 25, 25, 50, 50, 50, 50, 25, 25, 25, 25, 50, 50, 50, 50, 25, 25, 25, 25, 50, 50, 50,
50, 25, 25, 25, 25

36 | 15,
15, 15, 15, 15, 15, 15, 15

37 [30,
30, 30, 30, 30, 30, 30, 30

38 [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100

39 | 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 40, 40, 40, 40, 40

40 | 40, 40, 40, 40, 40, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30

A1 [40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40

42 [75,
75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

43150, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50

44 [75,
75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

45 [50,

50, 50,
50, 50, 50, 50

Table D.4: Continuation of Table D.3 for networks 26 through 45.

65

	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	The Large Depth Degeneracy Phenomenon in Neural Networks
	Outline
	Main Results for the Angle Process
	Introduction to the J Functions

	ReLU Neural Networks on Initialization
	Expected Value Calculation
	Variance Calculation

	Network Degeneracy as an Indicator of Training Performance
	Comparison to Infinite Width Networks

	Explicit Formula for Mixed-Moment J Functions
	Statement of Main Results and Outline of Method
	Gaussian Integration-by-Parts Formulas
	Recursive Formulas for J_a,b() - Proof of Proposition 1
	Solving the Recurrence to get an Explicit Formula for J_a,b() - Proof of Theorem 2

	Conclusion And Further Work
	Bibliography
	Appendix A
	Expected Value Approximation
	Variance Approximation
	Covariance Approximation
	Third and Fourth Moment Bound Lemma
	Expected Value Calculations
	Calculation of E[R+1]
	Calculation of E[R+1^2(^+1)]

	Variance and Covariance Calculations
	Calculation of `3́9`42`"̇613A`45`47`"603AVar[R+1]
	Calculation of `3́9`42`"̇613A`45`47`"603AVar[R+1^2(^+1)]
	Calculation of Cov(R+1^2(^+1),R+1)

	Derivation of Useful Identities - Equations 2.1, 2.2
	Cauchy-Binet and Determinant of the Gram Matrix - Equation 2.3
	Infinite Width Update Rule

	Appendix B
	Derivation of Lower-Order J Functions - Proof of Proposition 2
	Proof of Explicit Formulas for J_n,0 and J_n,1
	Bijection between Paths in Graphs of J Functions and the Bessel Number Graphs P,Q

	Appendix C
	P and Q numbers
	Recursions for the P and Q numbers - Proof of Lemma 3

	Appendix D

