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ABSTRACT

THE ANGLE DEGENERACY PHENOMENON IN DEEP NEURAL NETWORKS:

ANALYSIS AND RELATION TO TRAINING DYNAMICS

Cameron Jakub Advisor:

University of Guelph, 2023 Dr. Mihai Nica

Deep neural networks have proven to be powerful functions with many applications, but

the theoretical behaviour of these functions is not fully understood. One such behaviour

is the large depth degeneracy phenomenon, where inputs tend to become highly correlated

as they travel deeper into a randomly initialized network. This can make the network

effectively incapable of distinguishing between inputs, which has negative impacts on training

performance. Through combinatorial expansions, we develop precise formulas to predict the

expected value and variance of the angle between inputs at any layer of the initialized

network. We provide a detailed analysis of how quickly the angle tends toward zero in a

finite width setting, which proves to be qualitatively different than studying the problem in

the infinite width limit. We validate our theoretical results through comparison to empirical

simulations, and run experiments to explore how network degeneracy can impact training

dynamics.
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Introduction

1.1 The Large Depth Degeneracy Phenomenon in Neu-

ral Networks

Creating deep neural networks by stacking many layers has achieved exceptional performance

in many applications and contributed to the recent explosion of these methods. It has been

shown that the “power” of a network’s ability to approximate functions comes from the depth

of the network, rather than the width. In fact, Poole et al. [21] and Eldan and Shamir [9]

have shown that depth can exponentially improve the expressibility of a network. Specifically,

Eldan and Shamir [9] proved that there exists a function which cannot be approximated by

any two-layer feed forward neural network, but simply adding a layer to create a 3-layer

network allows one to approximate the function.

These findings may suggest that creating deeper networks is advantageous. However,

this is not always the case. As networks become deeper, they also are more susceptible

to becoming degenerate. This concept of degeneracy can be observed in multiple ways.

One sense in which a network can be considered degenerate is the concept of vanishing

and exploding gradients [10]. Hanin [10] studied this phenomenon in feed-forward ReLU

networks, and found that certain network architectures can cause the gradients of the network

to vary wildly on initialization. The stability of the gradients depends on the sum of the

inverse layer widths, where a larger sum corresponds to less stable gradients. Therefore,

networks with more layers can be more susceptible to unstable gradients. The vanishing and

exploding gradient problem poses a challenge to network training, and is an example of how

deeper networks do not necessarily correspond to better prediction.

Another sense in which feed forward neural networks can become degenerate is that as

inputs travel through a randomly initialized network, they tend to become more and more

correlated (i.e. the angle between inputs tends toward 0 as the number of layers tends toward
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infinity). Therefore, if an initialized network has too many layers, it may send all inputs

to effectively the same output, making the network incapable of differentiating between

any two inputs fed into it. This is the type of degeneracy we study in this thesis, which

has been observed by many authors from different angles [2, 3, 8, 12, 18, 20, 23]. For

example, Schoenholz et al. [23] found that there is a maximum depth for which information

can propagate in random neural networks. They reason that when information is able to

properly propagate through the networks, the networks are able to train precisely. However,

there exists a maximum depth for which networks can be properly trained. Similarly, Hayou

et al. [12] observed that an improper choice of activation can cause loss of information during

the forward pass of training. Avelin and Karlsson [2] noticed the degeneracy as a “cut off”

behaviour, for which after a certain depth, networks begin to behave very differently. Nachum

et al. [20] even observed this phenomenon in convolutional neural networks, finding that the

level of degeneracy was dependent on the type of input being fed into the networks.

Previous works have developed strategies to combat degeneracy in deep feed forward

neural networks. For ReLU networks, Li et al. [18] demonstrated how shaping the ReLU

activation function can prevent the angle between inputs from becoming trivially small as

they travel deeper into the network. They shape the ReLU function by tweaking the slopes

of the piecewise linear segments. Letting s− represent the slope for negative inputs, and s+

represent the slope for positive inputs, they define the “leaky” ReLU activation function φ∗ :

R → R as φ∗(x) = s+max(x, 0)+s−min(x, 0). Rather than shaping the activation function,

other authors have shown that modifying the architecture of the network itself can preserve

the variation between inputs. ResNets [14] have shown that strategically introducing skip

connections (connections between non-adjacent layers) can allow very deep networks to train

properly. Similarly, Srivastava et al. [24] introduced Highway Networks, where “highway

layers” in the architecture can behave as a blend between a typical feed-forward layer and a

layer which simply passes inputs through to the next layer, which reduces information loss

over many layers. Martens et al. [19] introduced the method of “deep kernel shaping” to

prevent deep networks from becoming degenerate. They suggest a strategy which involves

function transformations on the activation function, precise parameter initialization, and

alterations to the architecture of the network itself.

Further, previous studies have provided analyses for how the angle between inputs evolves

in infinite width networks (i.e. a network studied in the limit that all layer widths tend to-

wards infinity) [11, 12, 22, 23]. Studying the angle evolution in the infinite width limit

suggests that the angle between inputs goes toward 0 polynomially fast. The infinite width
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angle prediction uses the law of large numbers and thereby disregards any random fluctua-

tions in θℓ+1 given θℓ. These random fluctuations, though small, can accumulate over many

layers leading to inaccurate predictions for finite width networks.

The depth degeneracy phenomenon in ReLU networks has been observed in the past, and

the angle evolution in neural networks has been studied in the infinite width case, but there

has not yet been a study which provides a thorough analysis of the angle evolution for finite

width networks with the ordinary, unshaped ReLU function. This thesis provides a detailed

analysis of this problem, and provides a comparison of our finite width angle prediction to

the infinite width prediction developed in previous studies.

1.2 Outline

There are two main theoretical contributions of this thesis. The first is to prove Theorem

1, which describes the angle evolution between inputs in terms of a collection of mixed-

moment “J” functions, denoted Ja,b, for a, b ∈ N. The second theoretical contribution is to

separately derive an explicit formula for any of the mixed moments Ja,b, given in Theorem

2. With these theoretical results, we also run simulations to study the relationship between

the predicted level of degeneracy in a network, and the network’s training performance on

multiple datasets.

Section 1.3 covers the main results for the angle process analysis in deep ReLU networks.

Given the angle between inputs at layer ℓ, Theorem 1 introduces accurate formulas to predict

the mean and variance of the angle at layer ℓ+ 1. Theorem 1 is simplified into a convenient

finite width update rule for the angle in Approximation 1. We also compare our finite width

update rule to the infinite width rule, given in Approximation 3. Section 1.4 provides an

introduction to the J functions, which are essential for studying the angle evolution in a

finite width setting. A more detailed analysis of the J functions is given in Chapter 4.

Chapter 2 contains the analysis of the angle process and predicted distribution of ln(sin2(θℓ))

in deep ReLU networks. Section 2.1 covers our approximation of E[ln(sin2(θℓ+1))] given θℓ,

which leads to the finite width update rule for θℓ as in equation (1.1), while Section 2.2

outlines our approximation for Var[ln(sin2(θℓ+1))].

Chapter 3 uses the results from Chapter 2 to explore how network degeneracy can affect

training performance. We run simulations which compare the predicted final angle between

inputs to the accuracy of classification on the MNIST [7], Fashion-MNIST [25], and CIFAR-

10 [17] datasets. In Section 3.1, we demonstrate the advantages of using our finite-width
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prediction rule over the infinite width prediction rule.

In Chapter 4, we cover the derivation of the explicit formula for the J functions. We

state the main results of this section in Section 4.1, and cover the mathematical tools needed

to solve the expectations using Gaussian integration by parts in Section 4.2. We develop the

formula for Ja,b by first finding a recursive formula in Section 4.3, which reveals a connection

between the J functions and the Bessel numbers. This recursion is studied to develop an

explicit formula for Ja,b in Section 4.4.

1.3 Main Results for the Angle Process

In this thesis, we examine the evolution of the angle θℓ between two arbitrary inputs xα, xβ ∈
Rnin after passing through ℓ layers of a fully connected ReLU network (a.k.a. a multi-layer

perceptron) on initialization. The angle is defined in the usual way by the inner product

between two vectors in Rnℓ .

cos
(
θℓ
)
:=

⟨F ℓ(xα), F
ℓ(xβ)⟩

∥F ℓ(xα)∥∥F ℓ(xβ)∥
,

where nℓ is the width (i.e. number of neurons) of the ℓ-th layer and F ℓ : Rnin → Rnℓ is

the (random) neural network function mapping input to the post-activation logits in layer

ℓ on initialization. We assume here that the initialization is done with appropriately scaled

independent Gaussian weights so that the network is on the “edge of chaos” [12, 23], where

the variance of each layer is order one as layer width increases. See Table 2.1 for our precise

definition of the fully connected ReLU neural network.

With this setup, since the effect of each layer is independent of everything previous, θℓ

can be thought of as a Markov chain evolving as layer number ℓ increases. As expected

by the aforementioned “large depth degeneracy” phenomenon, we observe that the angle

concentrates θℓ → 0 as ℓ → ∞ (see Figure 1.1 for an illustration). This indicates that the

hidden layer representation of any two inputs in a deep neural network becomes closer and

closer to co-linear as depth increases.

In this thesis, we obtain a simple, yet remarkably accurate, approximation for the evolu-

tion of θℓ as a function of ℓ that captures precisely how quickly this degeneracy happens for

small angles θℓ and large layer widths nℓ.
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Figure 1.1: We feed 2 inputs with initial angle θ0 = 0.1 into 5000 Monte Carlo samples of
independently initialized networks with network width nℓ = 256 for all layers. Left: Using the
Monte Carlo samples, we plot the empirical mean and standard deviation of ln(sin2(θℓ)) at
each layer. We compare this to both the infinite width update rule and our prediction using
Approximation 1 for the mean of ln(sin2(θℓ)). Our prediction for the standard deviation
in each layer using Approximation 2 is also plotted as the shaded area. In contrast to
our prediction, the infinite width rule predicts 0 variance in all layers. Right: We plot
histograms of our simulations as well as our predicted probability density function using
Approximation 2 from (1.10) at Layer 1 (top) and Layer 30 (bottom). The predicted and
empirical distribution are statistically indistinguishable according to a Kolmogorov-Smirnov
test, with p values 0.987 > 0.05 (top) and 0.186 > 0.05 (bottom). The code which produced
this figure can be found at the following link.

Approximation 1 (Finite Width Update Rule). For small angles θℓ ≪ 1 and large layer

width nℓ ≫ 1, the angle θℓ+1 at layer ℓ+ 1 is well approximated by

ln sin2(θℓ+1) ≈ ln sin2(θℓ)− 2

3π
θℓ − ρ(nℓ), (1.1)

where ρ(nℓ) is a constant which depends on the width nℓ of layer ℓ, namely:

ρ(n) := ln

(
n+ 5

n− 1

)
− 10n

(n+ 5)2
+

6n

(n− 1)2
=

2

n
+O

(
n−2
)
. (1.2)

Figure 1.1 illustrates how well this prediction matches Monte Carlo simulations of θℓ

sampled from real networks. Also illustrated is the infinite width prediction for θℓ (discussed

in Appendix A.9) which is less accurate at predicting finite width network behaviour than

5
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our formula, due to the n−1
ℓ effects that our formula captures in the term ρ(nℓ) but are not

present in the infinite width formula.

Comparison to Infinite Width Networks

Approximation 1 predicts that θℓ → 0 exponentially fast in ℓ due to the term ρ(n); it predicts

θℓ ≤ exp

(
−1

2

ℓ∑
i=1

ρ(ni)

)
= exp

(
−

ℓ∑
i=1

1

ni

+O(n−2
i )

)
.

(Note that the exponential behaviour vanishes when nℓ → ∞ with ℓ fixed). In contrast to

this prediction, an analysis using only expected values or equivalently working in the infinite-

width nℓ → ∞ limit predicts that θℓ → 0 like ℓ−1, which is qualitatively very different! The

prediction of this rate was first demonstrated under the name “edge of chaos” [12, 23] and

again in Hanin [11], Roberts et al. [22]. These earlier works studied the correlation cos(θℓ)

as a function of layer number, and showed showed that 1 − cos(θℓ) → 0 like ℓ−2, which is

equivalent to θℓ → 0 like ℓ−1 by Taylor series expansion 1 − cos(x) ≈ 1
2
x2 as x → 0. The

update rule for cos(θℓ) in the infinite width limit is given in Approximation 3. A derivation

for this update rule in our notation is provided in Appendix A.9.

The fact that θℓ decays polynomially fast in infinite width networks compared to exponen-

tially fast in finite width networks means that information is preserved better layer-by-layer

in infinite width networks. This highlights an interesting advantage of infinite width net-

works: They are less susceptible to the depth degeneracy phenomenon in the sense that

infinite width architectures can be made deeper than finite width ones before becoming

“degenerate”.

We can also derive the infinite width prediction from our result by replacing ρ(n) with

0 in the update rule (1.1). Exponentiating both sides and using sin(θ) ≈ θ, eθ ≈ 1 + θ for

θ ≪ 1, Approximation 1 becomes (θℓ+1)2 ≈
(
θℓ)2(1− 2

3π
θℓ
)
, which is equivalent to the result

of Proposition C.1 of Hanin [11] and is also a corollary of Lemma 1 of Hayou et al. [12]. In

those papers, the rule was derived directly from the infinite width update rule for cos(θ),

and those results are equivalent to the fact that θℓ ≈ ℓ−1 as ℓ → ∞.

One of the main limitations of the infinite width predictions is that they predict zero vari-

ance in the random variable θℓ. In contrast to this, our methods allow us to also understand

the variance of this random variable, as discussed below.

6



More Detailed Results for the Mean and Variance

Approximation 1 is derived from a simplification of more precise formulas for the mean and

variance of the random variable ln(sin2(θℓ)), which are stated in Theorem 1 below.

Theorem 1 (Formula for mean and variance in terms of J functions). Conditionally on the

angle θℓ in layer ℓ, the mean and variance of ln sin2(θℓ+1) obey the following limit as the

layer width nℓ → ∞

E[ln sin2(θℓ+1)] =µ(θℓ, nℓ) +O(n−2
ℓ ), Var[ln sin2(θℓ+1)] = σ2(θℓ, nℓ) +O(n−2

ℓ ), (1.3)

µ(θ, n) := ln

(
(n− 1)(1− 4J2

1,1)

4J2,2 − 1 + n

)
+

4(J2,2 + 1)

n
(

4J2,2−1

n
+ 1
)2 (1.4)

−
4
(
8J2

1,1J2,2 − 8J4
1,1 + 4J2

1,1 − 8J1,1J3,1 + J2,2 + 1
)

n
(
1− 1

n

)2 (
1− 4J2

1,1

)2 ,

σ2(θ, n) :=
8n(J2,2 + 1)

(4J2,2 − 1 + n)2
+

8n(8J2
1,1J2,2 − 8J4

1,1 + 4J2
1,1 − 8J1,1J3,1 + J2,2 + 1)

(n− 1)2(1− 4J2
1,1)

2

(1.5)

−
16n(2J2

1,1 − 4J1,1J3,1 + J2,2 + 1)

(4J2,2 − 1 + n)(n− 1)(1− 4J2
1,1)

,

where E,Var denote the conditional mean and variance of quantities in layer ℓ + 1 given

the value of θℓ in the previous layer and Ja,b := Ja,b(θ
ℓ) are the joint moments of correlated

Gaussians passed through the ReLU function φ(x) = max{x, 0}, namely

Ja,b(θ) := EG,Ĝ[φ
a(G)φb(Ĝ)], (1.6)

where G, Ĝ are marginally N (0, 1) random variables with correlation E[GĜ] = cos(θ).

The joint moments Ja,b(θ) are discussed in detail in Section 4. A new combinatorial

method of computing these moments is presented, which is used to give an explicit formula

is given for these joint-moments, which is presented in Theorem 2. Using the explicit formula

for Ja,b, the result of Theorem 1 can be used to obtain useful asymptotic formulas for µ and

σ, as in the following corollary.

Corollary 1 (Small θ asymptotics for mean and variance). Conditionally on the angle θℓ in

layer ℓ, the mean and variance of ln(sin2(θℓ+1)) obey the following limit as the layer width
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nℓ → ∞

E[ln(sin2(θℓ+1))] =µ(θℓ, nℓ) +O(n−2
ℓ ), Var[ln(sin2(θℓ+1))] = σ2(θℓ, nℓ) +O(n−2

ℓ ), (1.7)

µ(θ, n) = ln(sin2 θ)− 2

3π
θ − ρ(n)− 8θ

15πn
−
(

2

9π2
− 68

45π2n

)
θ2 +O(θ3), (1.8)

σ2(θ, n) =
8

n
− 64

15π

θ

n
−
(
8 +

296

45π

)
θ2

n
+O

(
θ3
)
, (1.9)

where ρ(n) is as defined in (1.2).

To derive Approximation 1 from Theorem 1, we simply keep only the first few terms of the

series expansion (1.8), and then also completely drop the variability, essentially approximat-

ing σ2(θℓ, n) ≈ 0 (Note that in reality σ2(θ, n) ≈ 8/n from (1.9)). Therefore Approximation

1 is a greatly simplified consequence of Theorem 1.

Moreover, our derivation shows that ln(sin2(θℓ)) can be expressed in terms of averages

over n pairs of independent Gaussian variables (see (2.1-2.3)). Thus, by central-limit-theorem

type arguments, one would expect the following approximation by Gaussian laws which also

accounts for the variability of ln(sin2(θℓ)) using our calculated value for the variance.

(a) Mean as a function of θ (b) Variance as a function of θ

Figure 1.2: Plots comparing the functions µ(θ, n) and σ2(θ, n) to simulated neural networks.
The linear approximation of µ, used to create Approximation 1 is also displayed. Confidence
bands are constructed by randomly initializing 10000 neural networks with layer width nℓ =
1024, and a range of 100 initial angles 0.005 ≤ θℓ ≤ 0.8. We study θℓ+1 and use the
simulations to construct 99% confidence intervals for a) E

[
ln(sin2(θℓ))− ln(sin2(θℓ+1))

]
and

b) Var
[
ln(sin2(θℓ+1))

]
.
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Approximation 2. Conditional on the value of θℓ, the angle at layer ℓ+ 1 is well approxi-

mated by a Gaussian random variable

ln(sin2(θℓ+1))
d
≈ N (µ(θℓ, nℓ), σ

2(θℓ, nℓ)), (1.10)

where µ, σ2 are as in Theorem 1.

We find that the normal approximation (1.10) matches simulated finite neural networks

remarkably well; see Monte Carlo simulations from real networks in Figure 1.1. The big ad-

vantage of this approximation is that it very accurately captures the variance of ln(sin2(θℓ)),

not just its mean. This variance grows as ℓ increases, so it is crucial for understanding

behaviour of very deep networks.

The methods we use to obtain these approximations are quite flexible. For example,

more accurate approximations can be obtained by incorporating higher moments Ja,b(θ)

(see Chapter 2 for a discussion). We also believe that it should be possible to extend

these methods to other non-linearities beyond ReLU and more complicated neural network

architectures through the same basic principles we introduce here.

1.4 Introduction to the J Functions

In 2009, Cho and Saul [5] introduced the p-th moment for correlated ReLU-Gaussians, which

they denoted with the letter J ,

Jp(θ) := 2πE
[
φp(G)φp(Ĝ)

]
, (1.11)

where p ∈ N, φ(x) = max{x, 0} is the ReLU function, and G, Ĝ ∈ R are marginally two

standard N (0, 1) Gaussian random variables with correlation Cov(G, Ĝ) = cos(θ). This

quantity has found numerous applications for infinite width networks. One simple application

of J1 appears in the infinite width approximation for cos(θℓ), where ℓ is fixed and we take

the limit n1, n2, . . . nℓ → ∞ (see Appendix A.9 for a detailed derivation):

Approximation 3 (Infinite Width Update Rule). In the limit that the width of each layer

tends to infinity, the infinite width approximation for the angle θℓ+1 given θℓ is

cos
(
θℓ+1

)
=

J1(θ
ℓ)

π
=

sin(θℓ) + (π − θℓ) cos(θℓ)

π
. (1.12)
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The formula for J1 is the p = 1 case of a remarkable explicit formula for Jp derived by

Cho and Saul [5] namely,

Jp(θ) = (−1)p(sin θ)2p+1

(
1

sin θ

∂

∂θ

)p(
π − θ

sin θ

)
.

This allows one to derive asymptotics of θℓ in the infinite width limit, as in Section 1.1.

However, there are several limitations to this approach. Most important is that the infinite

width limit is not a good approximation when the network depth ℓ is comparable to the

network width n ([18]). The infinite width limit uses the law of large numbers to obtain

(1.12), thereby discarding random fluctuations. For very deep networks, microscopic fluc-

tuations (on the order of O(n−1
ℓ )) from layer to layer can accumulate over ℓ layers to give

macroscopic effects. This is why the infinite width predictions for θℓ are not a good match to

the simulations in Figure 1.1; very deep networks are far from the infinite width limit in this

case. See Figure 1.1 where the infinite width predictions are compared to finite networks.

Instead, to analyze the evolution of the angle θℓ more accurately, we need to do something

more precise than the law of large numbers to capture the effect of these microscopic fluc-

tuations. This is the approach we carry out in this thesis. While the mean only depends on

the p-th moment functions Jp from (1.11), these fluctuations depend on the mixed moments,

which we denote by Ja,b for a, b ∈ N as follows1

Ja,b(θ) := E
[
φa(G)φb(Ĝ)

]
, (1.13)

with G, Ĝ again as in (1.11) are marginally N (0, 1) with correlation cos(θ). In Section 2.1 we

carry out a detailed asymptotic analysis to write the evolution of θℓ in terms of the mixed

moments Ja,b. In order to make useful predictions, one must also calculate a formula for

Ja,b(θ). Unfortunately, the method that Cho-Saul originally proposed for this does not seem

to work when a ̸= b. This is because that method used contour integrals, and relied on using

certain trig identities which do not hold when a ̸= b. Instead, in Chapter 4, we introduce a

new method, based on Gaussian integration by parts, to compute Ja,b for general a, b via a

recurrence relation. By serendipity2, we find a remarkable combinatorial connection between

1Note that compared to Cho and Saul’s definition for Jp, we omit the factor of 2π in our definition of
Ja,b. The factor of 2π seems natural when a+ b is even (like the case a = b = p that Cho-Saul considered),
but when a+ b is odd a different factor of 2

√
2π appears! Therefore the factor of 2π would confuse things in

the general case (see Table 1.1). The correct translation between Cho-Saul Jp and our Ja,b is Jp = 2πJp,p.
2This connection was noticed by calculating the first few J functions, and then using the On-Line Ency-

clopedia of Integer Sequences to discover the connection to Bessel number (https://oeis.org/A001498).
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Ja,b and the Bessel numbers ([4]), which allows one to find an explicit (albeit complicated)

formula for Ja,b in terms of binomial coefficients. The formula for the first few functions are

shown in Table 1.1, and the general explicit formula is presented in Theorem 2.

a
b 0 1 2 3

0 π−θ cos θ+1 (π−θ)+sin θ cos θ 2(cos θ+1)+sin2 θ cos θ

1 sin θ+(π−θ) cos θ (cos θ+1)2 3(π−θ) cos θ+sin θ cos2 θ+2 sin θ

2 (π−θ)(2 cos2 θ+1)+3 sin θ cos θ 3 cos θ(cos θ+1)2+2(cos θ+1)+sin2 θ cos θ

3
(π−θ)(6 cos2 θ+9) cos θ

+5 sin θ cos2 θ+(6 cos2 θ+4) sin θ

Table 1.1: Table of formulas for the first few J functions. The normalizing constant appearing
in all entries, either c0 = 2π, c1 = 2

√
2π depending on the parity of a+ b, has been omitted,

i.e. the table shows the value of c(a+b mod 2)Ja,b(θ). (Note that when a = 0, the appropriate
convention of 00 = 0 is needed, see (4.1) for details). These generalize Jp(θ) of (1.11) which
appear on the diagonal of this table. Note that Ja,b = Jb,a so only upper triangular entries
are shown. An explicit formula for all Ja,b is derived in Section 4.4.
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ReLU Neural Networks on Initializa-

tion

In this chapter, we analyze ReLU neural networks and show how the the mixed moments

Ja,b appear in evolution of the angle θℓ on initialization. We define the notation we use for

a fully connected ReLU neural network, along with other notations we will use in Table 2.1.

Note that the factor of
√

2/nℓ in our definition implements the so called He initialization

[13], which ensures that E[∥zℓ∥2] = ∥x∥2 for all layers ℓ. This initialization is known to be

the “critical” initialization for taking large limits of the network [12, 22]. Given this neural

network, we wish to study the evolution of 2 inputs xα and xβ as they traverse through the

layers of the network. Specifically, we wish to study how the angle θ between the inputs

changes as the inputs are transformed from layer to layer.

The starting point for our calculation is to notice that because the weights are Gaussian,

the values of φℓ+1
α , φℓ+1

β are jointly Gaussian given the vectors of φℓ
α, φ

ℓ
β. In fact, it turns out

that by properties of Gaussian random variables, one only needs to know the values of the

scalars ∥φℓ
α∥, ∥φℓ

β∥ and θℓ to understand the full distribution of φℓ+1
α , φℓ+1

β . (see Appendix A.7

for details) By using the positive homogeneity of the ReLU function φ(λx) = λφ(x) for λ > 0,

we can factor out the effect of the norm of each vector in layer ℓ. After some manipulations,

these ideas lead us to the following identities that are the heart of our calculations: a full

derivation of these quantities are provided in Appendix A.7 and A.8.
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Symbol Definition

x ∈ Rnin Input (e.g. training example) in the input dimension nin ∈ N

ℓ ∈ N Layer number. ℓ = 0 is the input

nℓ ∈ N Width of hidden layer ℓ (i.e. number of neurons in layer ℓ)

W ℓ ∈ Rnℓ+1×nℓ Weight matrix for layer ℓ. Initialized with iid standard Gaussian entries

W ℓ
a,b ∼ N (0, 1)

φ : Rn → Rn Entrywise ReLU activation function φ(x)i = φ(xi) = max{xi, 0}

zℓ(x) ∈ Rnℓ Pre-activation vector in the ℓth layer for input x (a.k.a logits of layer ℓ)

z1(x) := W 1x, zℓ+1(x) :=
√

2
nℓ
W ℓ+1φ(zℓ(x)).

φℓ
α, φ

ℓ
β ∈ Rnℓ Post-activation vector on inputs xα, xβ respectively

φℓ
α := φ(zℓ(xα)), φℓ

β := φ(zℓ(xβ))

θℓ ∈ [0, π] Angle between φℓ
α and φℓ

β defined by cos(θℓ) :=
⟨φℓ

α,φ
ℓ
β⟩

∥φℓ
α∥∥φℓ

β∥

Rℓ+1 ∈ R Shorthand for the ratio Rℓ+1 :=
∥φℓ+1

α ∥2∥φℓ+1
β ∥2

∥φℓ
α∥2∥φℓ

β∥2

Table 2.1: Definition and notation used for fully connected ReLU neural networks.

∥φℓ+1
α ∥2= ∥φℓ

α∥2

nℓ

nℓ∑
i=1

2φ2(Gi), ∥φℓ+1
β ∥2=

∥φℓ
β∥2

nℓ

nℓ∑
i=1

2φ2(Ĝi), (2.1)

⟨φℓ+1
α , φℓ+1

β ⟩ =
∥φℓ

α∥∥φℓ
β∥

nℓ

nℓ∑
i=1

2φ(Gi)φ(Ĝi), (2.2)

Rℓ+1 sin2(θℓ+1) =
2

n2
ℓ

nℓ∑
i,j=1

(
φ(Gi)φ(Ĝj)− φ(Gj)φ(Ĝi)

)2
, (2.3)

whereRℓ+1 :=
∥φℓ+1

α ∥2∥φℓ+1
β ∥2

∥φℓ
α∥2∥φℓ

β∥2
, andGi, Ĝi are all marginallyN (0, 1), with correlationCov(Gi, Ĝi) =

cos(θℓ) and independent for different indices i. The identity in (2.3) is derived using the de-

terminant of the Gram matrix for vectors φℓ+1
α , φℓ+1

β (full derivation given in Appendix A.8).
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Combining the equations in (2.1) gives us a useful identity for the ratio Rℓ+1, namely:

Rℓ+1 =
4

n2
ℓ

nℓ∑
i,j=1

φ2(Gi)φ
2(Ĝj). (2.4)

Given some θℓ, we wish to predict the behaviour of θℓ+1. Rather than studying θℓ+1 directly,

we instead study the quantity ln(sin2(θℓ+1)). This allows us to use convenient approximations

and identities for quantities we are interested in. (And indeed, a post-hoc analysis shows

that as θ → 0, the random variable ln sin2(θℓ+1) has a non-zero constant variance which

depends only on nℓ. This is in contrast to θℓ itself which has variance tending to zero.

This is one reason why the Gaussian approximation for ln sin2(θℓ) ∈ (−∞,∞) works well,

whereas Gaussian approximations for θℓ or cos(θℓ) ∈ [−1, 1] are less accurate.) We first

derive a formula for E
[
ln(sin2(θℓ+1))

]
.

2.1 Expected Value Calculation

In this section, we show how to compute the expected value of ln(sin2(θℓ)) in terms of the

J functions as in Theorem 1. Firstly, using properties of the logarithm, we rewrite this

expectation as the difference

E
[
ln(sin2(θℓ+1))

]
= E

[
ln
(
Rℓ+1 sin2(θℓ+1)

)]
− E

[
ln
(
Rℓ+1

)]
. (2.5)

The two random variables Rℓ+1 and Rℓ+1 sin2(θℓ+1) in (2.5) both have interpretations in

terms of sums of Gaussians as in (2.3) and (2.4) which makes it possible to calculate their

moments in terms of the J functions. To enable our use of the moments here, we use the

following approximation of ln(X) for a random variable X, which is based on the Taylor

expansion for ln(1 + x) = x− 1
2
x2 + . . . (a full derivation is given in Appendix A.1):

ln(X) = ln(E[X]) +
X − E[X]

E[X]
− (X − E[X])2

2E[X]2
+ ϵ2

(
X − E[X]

E[X]

)
, (2.6)

where ϵ2(x) is the Taylor remainder term in ln(1 + x) = x− x2

2
+ ϵ2(x) and satisfies ϵ2(x) =

O(x3). Applying this approximation to the terms appearing on the right hand side of (2.5),
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and taking expected value of both sides, we obtain the estimates

E
[
ln
(
Rℓ+1 sin2(θℓ+1)

)]
= ln

(
E
[
Rℓ+1 sin2(θℓ+1)

])
−

Var
[
Rℓ+1 sin2(θℓ+1)

]
2E
[
Rℓ+1 sin2(θℓ+1)

]2 +O(n−2
ℓ ),

E
[
ln
(
Rℓ+1

)]
= ln

(
E
[
Rℓ+1

])
−

Var
[
Rℓ+1

]
2E [Rℓ+1]2

+O(n−2
ℓ ).

To control the error here, we have used here the fact that Rℓ+1 and Rℓ+1 sin2(θℓ+1) can be

written as averages over random variables as in (2.1 - 2.3). This allows us to show the 3rd

central moments for Rℓ+1 and Rℓ+1 sin2(θℓ+1) are O(n−2
ℓ ); see Appendix A.1 for details. This

approximation is convenient because we are able to calculate the values on the right hand

side of the equations in terms of the moments Ja,b by expanding/taking expectations of the

representations (2.1 - 2.3). The key quantities we calculate are

E
[
Rℓ+1

]
=

4J2,2 − 1

nℓ

+ 1, (2.7)

Var
[
Rℓ+1

]
=

4

nℓ

(J2,2 + 1) +
16

n2
ℓ

(
2J4,2 −

5

2
J2,2 + J2

2,2 +
5

8

)
+O

(
n−3
ℓ

)
, (2.8)

E
[
Rℓ+1 sin2(θℓ+1)

]
=

(nℓ − 1)(1− 4J2
1,1)

nℓ

, (2.9)

Var
[
Rℓ+1 sin2(θℓ+1)

]
=

8
(
−8J4

1,1 + 8J2
1,1J2,2 + 4J2

1,1 − 8J1,1J3,1 + J2,2 + 1
)

nℓ

+O
(
n−2
ℓ

)
,

(2.10)

where Ja,b = Ja,b(θ
ℓ). These formulas are calculated in Appendices A.5 and A.6 by a combi-

natorial expansion using the representations from (2.1-2.3). Combining these gives the result

for µ(θ, n) in Theorem 1. Note that to obtain a more accurate approximation, we would

simply include more terms in the variance expressions in (2.8, 2.10).
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2.2 Variance Calculation

In this section, we show how to compute the variance of ln(sin2(θℓ)) in terms of the J

functions as in Theorem 1. We can rewrite Var[ln(sin2(θℓ+1))] in the following way:

Var[ln(sin2(θℓ+1))] = Var
[
ln
(
Rℓ+1 sin2(θℓ+1)

)
− ln

(
Rℓ+1

)]
(2.11)

= Var
[
ln
(
Rℓ+1 sin2(θℓ+1)

)]
+Var

[
ln
(
Rℓ+1

)]
− 2 Cov

(
ln
(
Rℓ+1 sin2(θℓ+1)

)
, ln
(
Rℓ+1

))
.

We have now expressed this in terms of Rℓ+1 and Rℓ+1 sin2(θℓ+1) which will allow us to use

identities as in (2.1 - 2.3) in our calculations. Appendices A.2 and A.3 cover the method

used to approximate the unknown variance and covariance terms above. Once again, we

control the error term arising from moments in the error term of the Taylor series by using

representation as sums (2.1 - 2.3). We have already calculated most of the quantities on the

right hand side already in our calculation for µ(θ, n). The only new term is

Cov
(
Rℓ+1 sin2(θℓ+1), Rℓ+1

)
=

1

nℓ

(
16J2

1,1 − 32J1,1J3,1 + 8J2,2 + 8
)
+O

(
n−2
ℓ

)
.

This is again computed by a combinatorial expansion of the sums (2.1-2.3). (Full cal-

culation given in Appendix A.6). We now have solved for all of the functions needed to

perform our approximation of Var[ln(sin2(θℓ+1))]. Putting it together, we end up with the

expression for σ2(θ, n) as in (1.5). We compare the predicted probability distribution of

ln(sin2(θ)) using our formulas µ(θ, n) and σ2(θ, n) to empirical probability distributions in

Figure 1.1.
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Network Degeneracy as an Indicator of

Training Performance

This chapter uses the theoretical results derived thus far as an input into experiments that

investigate how the level of degeneracy can influence training. We use the formula µ(θ, n)

developed in Theorem 1 to create a simple algorithm which accurately predicts the angle

between inputs after travelling through the layers of an initialized network up to an error of

size O(n−2
ℓ ) in layer ℓ.

Algorithm 1 Angle prediction between inputs for a feed-forward ReLU network with depth
L and layer widths nℓ, 1 ≤ ℓ ≤ L. The function µ(θ, n) is given in Theorem 1.

1: θ0 = angle between inputs
2: for ℓ = 0, . . . , L− 1 do
3: x = µ(θℓ, nℓ) ▷ x represents E[ln(sin2(θℓ+1))]
4: θℓ+1 = arcsin(e

x
2 )

5: end for
6: Final angle = θL

Algorithm 1 predicts the angle at the final layer on initialization based solely on the

network architecture n1, n2, . . . nL. If all inputs into an initialized network tend to be highly

correlated by the final layer, this could make it difficult for the network to distinguish

the differences between inputs and therefore harder to train. Figure 3.1 demonstrates how

networks which exhibit this type of degeneracy empirically tend to perform worse after

training, and seem to train less consistently than networks which can better distinguish

between inputs on initialization.
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Figure 3.1: We compare 45 different network architectures trained on the MNIST [7],
Fashion-MNIST [25], and CIFAR-10 [17] datasets 10 times each. Using the architecture
of the network and Algorithm 1, we predict the angle between 2 orthogonal inputs at the
final output layer of the network on initialization. We express the angle as ln(sin2(θL)), to
follow the form used when developing the finite width approximations. The angle is plotted
against the accuracy of each network on the test data after training, with error bars repre-
senting a 95% confidence interval across the 10 runs. All networks are trained using 1 epoch,
batch size = 100, categorical cross-entropy loss, the ADAM optimizer, and default learning
rate in the Keras module of TensorFlow [1]. See Appendix D for details on all of the network
architectures used. The code which produced this figure can be found at the following link.

When Algorithm 1 predicts that the network architecture forces inputs to become highly

correlated on initialization, this serves a warning that the network may train poorly. Before

going through the computationally expensive process of training many networks to assess

their performance, this prediction could be used to quickly filter out network architectures

that are unlikely to perform well.

3.1 Comparison to Infinite Width Networks

The angle degeneracy phenomenon has been studied in previous works for networks in the

limit of infinite width [11, 12, 22, 23]. The infinite width case uses the law of large numbers
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and thereby disregards any random fluctuations in θℓ+1 given θℓ. These random fluctua-

tions, though small, can accumulate over many layers leading to inaccurate predictions for

finite width networks (see Figure 1.1). The infinite width update rule is given below in

Approximation 3.

Another issue with using the infinite width prediction to study finite width networks is

that all networks with the same depth are treated exactly the same, since it does not take

into account the width of each layer. Both the depth of the network and the width of each

layer affect how the angle between inputs propagates layer-by-layer through the network.

Figure 3.2-Left illustrates how our method yields different angle predictions for different

architectures with the same depth, while the infinite width method does not. Figure 3.2-

Right shows the how the infinite width predictions differ from our “finite width” method

which takes into account fluctuations of size O(n−1) in each layer.

Figure 3.2: Left: Comparison of the finite and infinite width predictions for 5 network
architectures with a depth of L = 3 trained 10 times each on the CIFAR-10 dataset [17].
The infinite width predicts the same final angle for all networks, since it only depends on
network depth. Right: Using the same 45 network architectures as in Figure 3.1, we plot
a comparison of the predicted angle θL using Algorithm 1 (finite width) versus the infinite
width prediction. We see that the infinite width prediction tends to underestimate the rate
at which θℓ tends towards 0.
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Explicit Formula for Mixed-Moment J

Functions

In this chapter, we develop a combinatorial method that allows us compute exact formulas

for the J functions. The method is to use Gaussian integration by parts to find a recurrence

relationship between the moments Ja,b, and then solve it explicitly. We begin by generalizing

the definition of Ja,b from (1.13) to include a = 0 and/or b = 0 as follows. Let G, W be

independent N (0, 1) variables. Then, we define the functions Ja,b(θ) as

Ja,b(θ) = E[Ga(G cos θ +W sin θ)b 1{G > 0} 1{G cos θ +W sin θ > 0}], (4.1)

where a, b ∈ N∪{0} and 1{A} is the indicator function for condition A. Note that G cos θ+

W sin θ = Ĝ is marginally N (0, 1) and has correlation cos(θ) with G, matching the original

definition. The ReLU function satisfies the identity φ(x)a = xa1{x > 0} for a ≥ 1, so (4.1)

generalizes (1.13) to the case a = 0. We also note that Ja,b(θ) = Jb,a(θ) for all a, b ∈ N∪{0}.

4.1 Statement of Main Results and Outline of Method

By using the method of Gaussian integration by parts, we are able to derive recurrence

relations for the Ja,b functions. Since the definition of Ja,b involves the indicator function

1{G > 0}, we must make sense of what the derivative of this function means for the purposes

of integration by parts; see Section 4.2 where this is carried out. Then, by use of the gen-

eralized Gaussian integration by parts formula given in Section 4.2, we obtain the following

recurrence relations for Ja,b.

Proposition 1 (Recurrence relations for Ja,b). For a ≥ 2, the sequence Ja,0 satisfies the
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recurrence relation:

Ja,0(θ) = (a− 1)Ja−2,0(θ) +
sina−1 θ cos θ

ca mod 2

(a− 2)! ! , (4.2)

where c0 = 2π, c1 = 2
√
2π. For a ≥ 2, and b ≥ 1, the collection Ja,b satisfies the following

two-index recurrence relation:

Ja,b(θ) = (a− 1)Ja−2,b(θ) + b cos θJa−1,b−1(θ). (4.3)

The same integration by parts technique that yields the recurrence relation also makes

it easy to evaluate the first few J functions. They are as follows:

Proposition 2 (Explicit Formula for J0,0, J1,0, J1,1). J0,0, J1,0, and J1,1 are given by

J0,0(θ) =
π − θ

2π
, J1,0(θ) =

1 + cos θ

2
√
2π

, J1,1(θ) =
sin θ + (π − θ) cos θ

2π
. (4.4)

See Appendix B.1 for a derivation of these quantities. Note that Cho and Saul [5] have

previously discovered the formulas for J0,0 and J1,1 by use of a completely different contour-

integral based method.

The combination of Propositions 1 and 2 make it possible to practically calculate any

value of Ja,b when a, b are not too large. However, we are also able to find remarkable explicit

formulas for Ja,b, which we report below.

Proposition 3 (Explicit Formulas for Ja,0(θ), Ja,1(θ)). Let a ≥ 2. Then, Ja,0 and Ja,1 are

explicitly given by the following:

Ja,0(θ) = (a− 1)! !

Ja mod 2,0 +
cos θ

ca mod 2

∑
i ̸≡a( mod 2)

0<i<a

(i− 1)! !

i! !
sini θ

 ,

where c0 = 2π, c1 = 2
√
2π. We can then use the explicit formula for Ja,0 in the formula for

Ja,1:

Ja,1(θ) = (a− 1)! !

Ja mod 2,1 + cos θ
∑

i ̸≡a( mod 2)
0<i<a

Ji,0(θ)

i! !

 ,
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where an explicit formula for the first term (either J1,0 or J1,1 depending on the parity of a)

is given in Proposition 2.

Proof See Appendix B.2.

We can finally express Ja,b as a linear combination of J0,n and J1,n, as follows. (In light

of the previous explicit formulas, this is an explicit formula for Ja,b.) It turns out that the

coefficients are given in terms of two special numbers P (a, b) and Q(a, b) which we define

below.

Definition 1 (P and Q Numbers). The numbers P (a, b) and Q(a, b) are defined as follows,

P (a, b) =


a!

b!(a−b
2 )! 2

a−b
2
, a ≥ b, a ≡ b (mod 2)

0, otherwise

, (4.5)

Q(a, b) =


(a+b

2 )!
b!

2
b−a
2

∑a−b
2

i=0

(
a+1
i

)
, a ≥ b, a ≡ b (mod 2)

0, otherwise
. (4.6)

P (a, b) represents a family of numbers known as the Bessel numbers of the second kind [4].

The Bessel numbers are the coefficients of the Bessel polynomials [6], which arise naturally in

studies of the classical wave equation in a spherical coordinate system [15]. The Q numbers

are closely related to the Bessel numbers [16], and both the P and Q numbers follow a similar

recursion pattern to that of Ja,b (see Lemma 3). Using these, we can express Ja,b as follows:

Theorem 2 (Explicit Formula for Ja,b(θ)). Let b ≥ 2, a ≥ 1, b ≥ a. Then, we have the

following formula for Ja,b(θ) in terms of J0,n and J1,n

Ja,b =
∑

i≡0( mod 2)
0<i≤a

(b)a−i(cos θ)
a−i (P (a, a− i)−Q(a− 1, a− 1− i)) J0,b−a+i

+
∑

i≡1( mod 2)
0<i≤a

(b)a−i(cos θ)
a−iQ(a− 1, a− i)J1,b−a+i,

where (b)k = b(b− 1) · · · (b− k + 1) is the falling factorial with k terms.

Remark 1. Since J1,n is also given in terms of J0,n, one may further simplify the formula

for Ja,b to be in terms of only J0,n and J1,1. This substitution yields the following formula.
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For notational convenience, we will let δ := b− a,

Ja,b =
∑

i≡0( mod 2)
0<i≤a

(b)a−i(cos θ)
a−i(P (a, a− i)−Q(a− 1, a− 1− i))J0,δ+i

+
∑

i≡1( mod 2)
0<i≤a

(b)a−i(cos θ)
a−iQ(a− 1, a− i)(δ + i− 1)! ! J(δ+1) mod 2,1

+ cos θ
∑

i≡1( mod 2)
0<i≤a

∑
j≡δ( mod 2)
0<j<δ+i

(b)a−i(cos θ)
a−iQ(a− 1, a− i)

(δ + i− 1)! !

j! !
J0,j.

4.2 Gaussian Integration-by-Parts Formulas

This section covers two important formulas that together give us the tools for computing

the expectations that appear in Ja,b.

Fact 1 (Gaussian Integration by Parts). Let G ∼ N (0, 1) be a Gaussian variable and f :

R → R be a differentiable function with limg→∞ f(g)e
−g2

2 = 0. Then,

E[Gf(G)] = E[f ′(G)]. (4.7)

Proof (of Fact 1). Applying integration by parts, we have

E[Gf(G)] =

∫ ∞

−∞
gf(g)

e
−g2

2

√
2π

dg

=

[
f(g)

(
−e

−g2

2

√
2π

)]∞
−∞

−
∫ ∞

−∞

(
−e

−g2

2

√
2π

)
f ′(g)dg

= 0 +

∫ ∞

−∞
f ′(g)

e
−g2

2

√
2π

dg

= E[f ′(G)]

Using this type of Gaussian integration by parts formula, we can generalize the expected

value of Gaussians to derivatives of functions which are not necessarily differentiable. For ex-

ample the indicator function 1{x > a} is not differentiable, but for the purposes of computing

Gaussian expectation, we can use the following integration formula.
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Fact 2 (Gaussian expectations involving 1′{x > a}). Let G be a Gaussian variable and

a ∈ R. Let f : R → R such that limg→∞ f(g)e
−g2

2 = 0. Then, using the Gaussian integration

by parts formula to assign a meaning to expectations involving the “derivative of the indicator

function”, 1′{x > a}, we have

E[1′{G > a}f(G)] = f(a)
e

−a2

2

√
2π

. (4.8)

Remark 2. The purpose of assigning a value to the expectation (4.8) is to allow one to

compute “honest” expectations of the form (4.7) when f(x) involves 1{x > 0}; see Lemma 1

for an illustrative example. The final result does not require interpreting “1′{x > a}”; this
is only a useful intermediate step in the sequence of calculations leading to the final result.

The formula can also be understood or proven in a number of alternative ways. One is

simply to say that 1′{x > a} = δ{x = a} is a “Dirac delta function” at x = a. A more

rigorous way would be to take any differentiable family of functions 1ϵ{x > a} which suitably

converge to 1{x > a} as ϵ → 0 and then interpret the result as the limit of the expectation

limϵ→0E[1
′
ϵ{G > a}f(G)].

Proof (of Fact 2). Applying integration by parts, we formally have

E[1′{G > a}f(G)] =

∞∫
−∞

1′{g > a}f(g)e
−g2

2

√
2π

dg

=

[
1{g > a}f(g)e

−g2

2

√
2π

]∞
−∞

−
∞∫

−∞

1{g > a} d

dg

(
f(g)

e
−g2

2

√
2π

)
dg.

Note that the first term is 0 by the hypothesis lim
g→∞

f(g)e
−g2

2 = 0, and we have then

E[1′{G > a}f(G)] = −
∞∫
a

d

dg

(
f(g)

e
−g2

2

√
2π

)
dg = −

[
f(g)

e
−g2

2

√
2π

]∞
a

= 0 + f(a)
e

−a2

2

√
2π

,

where we have used the hypothesis on f once again.

Corollary 2. For two independent Gaussian variables G,W , and f : R2 → R such that
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limg→∞E[f(g,W )]e
−g2

2 = 0, we have that

E[1′{G > a}f(G,W )] = E[f(a,W )]
e

−a2

2

√
2π

.

The two facts about Gaussian integration by parts can be combined to create recurrence

relations for expectations involving 1{G > a}. A simple example is the following lemma,

which we will also use later in our derivation. The proof strategy of this lemma is a microcosm

of the proof strategy we use to compute Ja,b in general, namely to use Gaussian integration

by parts to derive a recurrence relation and initial condition, and then solve.

Lemma 1 (Moments of φ(G)). For k ≥ 0, we have

E[φ(G)k] = E[Gk1{G > 0}] =


(k−1)!!

2
k is even

(k−1)!!√
2π

k is odd
=

√
2π

(k − 1)! !

ck−1 mod 2

,

where c0 = 2π and c1 = 2
√
2π.

Proof. We prove this for even and odd k separately by induction on k. The base case for

k = 0 is trivial since (0− 1)! ! = 1 is the empty product. The base case k = 1 follows by first

applying (4.7) with f(x) = 1{x > 0} and then applying (4.8) with f(x) ≡ 1,

E[φ(G)] = E[G · 1{G > 0}] = E[1′{G > 0}] = 1√
2π

.

Now, to see the induction, we apply (4.7) with f(x) = xk−11{x > 0}, k ≥ 2. Due to the

product rule, there are two terms in the derivative,

E[φ(G)k] = E[G ·Gk−11{G > 0}] (4.9)

= (k − 1)E[Gk−21{G > 0}] + E[Gk−11′{G > 0}]

= (k − 1)E[φ(G)k−2] + 0,

where we have recognized that the second term is 0 by application of (4.8) with f(x) = xk−1

which has f(0) = 0. The recurrence E[φ(G)k] = (k − 2)E[φ(G)k−2] along with initial

condition leads to the stated result by induction.
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4.3 Recursive Formulas for Ja,b(θ) - Proof of Proposi-

tion 1

Proof (of Proposition 1). To find a recursive formula for Ja,0, a ≥ 2, we apply the Gaussian

integration by parts formula (4.7) to f(x) = xa−11{x > 0}1{x cos θ+W sin θ > 0} to evaluate
the expected value over G first. When applying the product rule there are three terms:

Ja,0 =E[G ·Ga−11{G > 0}1{G cos θ +W sin θ > 0}] (4.10)

=(a− 1)E[Ga−21{G > 0}1{G cos θ +W sin θ > 0}]

+ E[Ga−11{G > 0}1′{G cos θ +W sin θ > 0}] cos θ

+ E[Ga−11′{G > 0}1{G cos θ +W sin θ > 0}].

The first term is simply (a−1)Ja−2,0. The last two terms can now be evaluated with the help

of (4.8). The last term of (4.10) is (4.8) with the function f(x) = xa−11{x cos θ+W sin θ > 0}
which has f(0) = 0 for a ≥ 2. Therefore, this term simply vanishes.

To evaluate the middle term of (4.10), we introduce a change of variables to express

G cos θ +W sin θ in terms of two other independent Gaussian variables Z,W ∼ N (0, 1)

Z = G cos θ +W sin θ, G = Z cos θ + Y sin θ, (4.11)

Y = G sin θ −W cos θ, W = Z sin θ − Y cos θ,

where Y, Z iid N (0, 1). Under this change of variables, Ja,0, a ≥ 2 is setup to apply (4.8)

with f(x) = 1{x cos θ + Y sin θ}a−11{x cos θ + Y sin θ > 0}:

Ja,0 = (a− 1)Ja−2,0 + E[Ga−11{G > 0}1′{G cos θ +W sin θ > 0}] cos θ

= (a− 1)Ja−2,0 + E[(Z cos θ + Y sin θ)a−11{Z cos θ + Y sin θ > 0}1′{Z > 0}] cos θ

= (a− 1)Ja−2,0 + E[(0 + Y sin θ)a−11{0 + Y sin θ > 0}] 1√
2π

cos θ

= (a− 1)Ja−2,0 +
sina−1 θ cos θ

ca mod 2

(a− 2)! ! ,

where we have applied Lemma 1 to evaluate the last expectation.

A similar argument is used to find the recursive formula for Ja,b, a ≥ 2, b ≥ 1, by using

(4.7) with the function f(x) = xa−1(x cos θ + W sin θ)b1{x > 0}1{x cos θ + W sin θ > 0}.
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There are four terms in the product rule derivative. Fortunately in this case, the last two

terms are simply zero by application of (4.8) since the expressions vanish when G = 0, so

we get

Ja,b = E[G ·Ga−1(G cos θ +W sin θ)b1{G > 0}1{G cos θ +W sin θ > 0}]

= E[(a− 1)Ga−2(G cos θ +W sin θ)b1{G > 0}1{G cos θ +W sin θ > 0}]

+ E[Ga−1b cos θ(G cos θ +W sin θ)b−11{G > 0}1{G cos θ +W sin θ > 0}]

+ E[Ga−1(G cos θ +W sin θ)b1′{G > 0}1{G cos θ +W sin θ > 0}]

+ E[Ga−1(G cos θ +W sin θ)b1{G > 0}1′{G cos θ +W sin θ > 0} cos θ]

= (a− 1)Ja−2,b + b cos θJa−1,b−1 + 0 + 0,

as desired.

4.4 Solving the Recurrence to get an Explicit Formula

for Ja,b(θ) - Proof of Theorem 2

Solving the recurrence for the sequences Ja,0 and Ja,1 to get the claimed explicit formula

for Ja,0 is a simple induction proof. We defer these to Appendix B.2. More difficult and

interesting is the 2D array Ja,b. To solve the recurrence

Ja,b = (a− 1)Ja−2,b + b cos θJa−1,b−1, a ≥ 2, b ≥ 1, (4.12)

we will apply the recursion repeatedly until Ja,b can be expressed as a linear combination of

J0,n and J1,n terms for which we already have an explicit formula developed. To determine

the coefficients in front of J0,n and J1,n, we take a combinatorial approach by thinking of the

recurrence relation as a weighted directed graph as defined below.

Definition 2 (Viewing a recursion as a directed weighted graph). We can view the recurrence

relation for Ja,b as a weighted directed graph on the vertex set (a, b) ∈ Z2 where vertices

represent the values of Ja,b and directed edges capture how values of Ja,b are connected through

the recurrence relation. To be precise, the graph edges and edge weights we are defined so
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that the recursion (4.12) for Ja,b can be expressed in the graph as a sum over incoming edges,

Ja,b =
∑

e:(a′,b′)→(a,b)

wJ
e Ja′,b′ , (4.13)

where the sum is over the edges e with weight wJ
e incoming to the vertex (a, b). An example

of the graph to calculate J6,8 is illustrated in Figure 4.1.

By repeatedly applying the recursion, Ja,b can be expressed as a linear combination of

the values at the source vertices of the graph (i.e. those with no incoming edges). For the

recurrence Ja,b, the source vertices are J0,n and J1,n. The coefficient in front of each source

is simply the weighed sum over all paths from the source to the node, namely

Ja,b =
∑

source vertices v

W J
v→(a,b)Jv =

∑
n≥0

W J
(0,n)→(a,b)J0,n +

∑
n≥0

W J
(1,n)→(a,b)J1,n, (4.14)

W J
(a′,b′)→(a,b) :=

∑
π:(a′,b′)→(a,b)

∏
e∈π

wJ
e , (4.15)

where the sum is over all paths π from the vertex (a′, b′) to the vertex (a, b) in the J graph.

In light of (4.14), to prove Theorem 2, we have only to calculate the weighted sum of

paths W J
(0,n)→(a,b) and W J

(1,n)→(a,b). These weighted sums turn out to be given in terms of the

P and Q numbers which were defined in Definition 1.

Proposition 4 (Weighted sums of paths for J). In the graph for J , we have the following

formulas for the sum over weighted paths W J defined in (4.15),

W J
(0,n)→(a,b) = (b)b−n(cos θ)

b−n(P (a, b− n)−Q(a− 1, b− n− 1)), (4.16)

W J
(1,n)→(a,b) = (b)b−n(cos θ)

b−nQ(a− 1, b− n). (4.17)

To prove this Proposition 4, we first create a simpler recursion, J∗, which we solve first

and then slightly modify the solution to get the solution for J .

Lemma 2 (Weighted sums of paths for J∗). Let J∗
a,b be defined to be the recursion:

J∗
a,b := (a− 1)J∗

a−2,b + 1J∗
a−1,b−1 for 2 ≤ a ≤ b, (4.18)

J∗
1,b := 0 + 1J∗

0,b−1 for 1 ≤ b. (4.19)

Thinking of this recursion as a graph as in Definition 2 (see Figure 4.1 for an illustration),
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(b) Directed graph associated with J∗

Figure 4.1: The graph associated with the recursions for J in (4.12) (left) and J∗ in (4.19)
(right). The graph is defined so that the recursion is given by a sum of incoming edges as in
(4.13). The edges are color coded red and blue to match the coefficients in the recursion.

we have that the sum of weighted paths W J∗
defined analogously to those in (4.15), are given

by P and Q numbers, namely

W J∗

(0,n)→(a,b) = P (a, b− n), W J∗

(1,n)→(a,b) = Q(a− 1, b− n). (4.20)

The connection between the J∗ and the P , Q numbers is through the following recursion

for the P , Q numbers.

Lemma 3. (Recursion for P and Q numbers) The P numbers, defined in Definition 1,

satisfy P (0, 0) = 1, P (n, n) = P (n− 1, n− 1) for n ≥ 1, and the recursion

P (a, b) = (a− 1) · P (a− 2, b) + 1 · P (a− 1, b− 1), for a ≥ 2, 0 ≤ b ≤ a− 2,

under the convention that P (a,−1) = 0. The Q numbers satisfy the same recursion as the

P numbers, with a coefficient of a rather than (a− 1).

The proof of Lemma 3 is an easy consequence of known results from [16] and is deferred

to Appendix C.2.

Proof (of Lemma 2). Using the same idea of recursions expressed as graphs as in Definition

2, the recursion from Lemma 3 means that P and Q can be expressed as weighted directed

graphs. These are displayed in Figure 4.2. Since the P and Q graphs have only one single

unit valued source vertex at (0, 0), (4.14) shows that the P and Q numbers are actually
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themselves equal to sums over weighted paths in their respective graphs

P (a, b) = W P
(0,0)→(a,b), Q(a, b) = WQ

(0,0)→(a,b).
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Figure 4.2: Graphs associated with the recursions for the P numbers (left), Q numbers
(middle), and J∗ (right). The weighted edges indicate the coefficients in the recursions for
P,Q, J∗ respectively. The diagrams are lined up so that the sum of weighted paths in from
J∗
6,8 can be directly read from the P and Q entries in the same location. By reading from the

bottom displayed row of P we see that the weighted sum over paths W J∗

(0,n)→(6,8) are 15, 45,

15 and 1 for n = 8, 6, 4 and 2 respectively. (Since these are the source vertices, this shows
that J∗

6,8 = 15J∗
0,8+45J∗

0,6+15J∗
0,4+1J∗

0,2.) From the bottom displayed row of Q we see that
the values for sums of weighted paths from vertices W J∗

(1,n)→(6,8) are 33, 14 and 1 for n = 7, 5
and 3 respectively.

Therefore the statement of the lemma is that sum over weighted paths in the J∗ graph

are the same as other sums over weighted paths in the P graph/Q graphs,

W J∗

(0,n)→(a,b) = W P
(0,0)→(a,b−n), W J∗

(1,n)→(a,b) = WQ
(0,0)→(a−1,b−n). (4.21)

The fact that these are equal is demonstrated by establishing a simple bijection between

weighted paths in the P graph/Q graph, and weighted paths in the J∗ graph. For example,

in Figure 4.2, there is a bijection between the weighted paths in the P graph which connect

P (0, 0) to P (6, 2), to the paths which connect J∗
6,8 to J∗

0,6 in the J∗ graph. The bijection

is simply to flip any path in the P -graph by rotating it by 180◦ to get a valid path in the

J∗-graph. Moreover, the edge weights for J∗ and P are precisely set up so that under this

bijection, the paths will have the same set of weighted edges in the same order. A full, more

detailed, explanation of this bijection is given in Appendix B.3. This argument shows that
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W J∗

(0,n)→(a,b) = P (a, b− n) as desired.

The P numbers do not apply for paths between J∗
1,n and J∗

a,b because we are starting one

row higher so the first vertical upward edge is weight 2. In this case, there is a bijection to

the Q-graph after flipping the path. For any path which runs from a node in row 1 to the

top left corner of the J∗-graph, we can find the same “flipped” path in the graph of the Q,

running from the top left entry to the corresponding node in row a − 1. (The bijection is

explained in detail in Appendix B.3.) Hence W J∗

(1,n)→(a,b) = Q(a− 1, b− n) as desired.

Having solved for J∗ in terms of P and Q, it remains to translate these into the weights

for J to obtain Proposition 4.

Proof (of Proposition 4). The proof follows by relating the weighted sum of paths for J in

terms of J∗ and then applying the result of Lemma 2. There are two differences between

the formula for Ja,b compared to J∗
a,b, which can both be seen in Figure 4.1. We handle both

differences as follows:

Difference #1: J has a weight of b cos θ on the blue diagonal edges (a, b) → (a+ 1, b+ 1) vs

J∗ has a weight of 1.

This difference is handled by the following observation: any path from (a, b) → (a′, b′)

in the graph goes through each column between b and b′ exactly once. This means that the

contribution of the edge weights from these edges do not depend on the details of which path

was taken, only the starting and ending points. They always contribute the same factor,

(b)b′−b(cos θ)
b′−b. (Recall that (b)k = b(b − 1) · · · (b − k + 1) is the falling factorial with k

terms.) This argument shows that the weighted sum of paths in J and J∗ are related by

W J
(a,b)→(a′,b′) = (b)b′−b(cos θ)

b′−bW J∗

(a,b)→(a′,b′). (4.22)

By the result of Lemma 2, this shows that W J
(1,n)→(a,b) = (b)b−n(cos θ)

b−nQ(a − 1, b − n) as

desired. Equation (4.22) holds for all paths with starting point a ≥ 1. When a = 0, there is

one additional difference between J and J∗ which is accounted for below.

Difference #2: J0,n has no diagonal edge vs J∗
0,n has a diagonal blue edge of weight 1.

Because of this “missing edge”, the only choice in J for paths starting from (0, n) is to

first go vertically up by 2 units to (2, n). Hence W J
(0,n)→(a,b) = W J

(2,n)→(a,b). To evaluate this,

we use the decomposition of paths in J∗ by what their first step is, either a diagonal blue
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step or a red vertical up step, to see that

W J∗

(0,n)→(a,b) = W J∗

(1,n+1)→(a,b) +W J∗

(2,n)→(a,b), (4.23)

=⇒ W J∗

(2,n)→(a,b) = W J∗

(0,n)→(a,b) −W J∗

(1,n+1)→(a,b) (4.24)

= P (a, b− n)−Q(a− 1, b− n− 1), (4.25)

by the result of Lemma 2. By applying now (4.22) to relate J and J∗, we obtainW J
(0,n)→(a,b) =

W J
(2,n)→(a,b) = (b)b−n(cos θ)

b−n(P (a, b− n)−Q(a− 1, b− n− 1)) as desired.

Proof (of Theorem 2). The formula is immediate from (4.14), which writes Ja,b as a linear

combination of J0,n and J1,n, and Proposition 4 which gives the the coefficients.
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Conclusion And Further Work

This thesis provides a detailed analysis of the angle process in deep feed forward ReLU

networks on initialization. Our derivation of an explicit formula for the mixed-moment J

functions allows for this analysis to be repeated with more accurate approximations for

the mean and variance of ln(sin2(θℓ)) by including higher-order mixed J functions in the

calculations.

We believe the methods proposed here are flexible enough to be modified to apply to

non-linearities other than the ReLU. It would be interesting to repeat our analysis for other

activations, such as tanh(x) to see how the angle evolution changes compared to the ReLU.

The angle evolution could also be studied for ReLU networks with architectures beyond fully-

connected networks. Adding skip connections or highway layers can improve information

flow to deep layers of a network. Performing a similar analysis as ours on ResNets [14] or

Highway Networks [24] could help us better understand how inputs behave as they travel

through these modified architectures.

As mentioned previously, one method to combat network degeneracy is activation func-

tion shaping, where the activation function is tweaked in such a way to preserve the angle

between inputs. It would be interesting to repeat our analysis for a more generalized ReLU

function, such as the “leaky” ReLU studied in Li et al. [18], where they alter the slopes of

the ReLU function on the negative and positive domains. Developing a more general update

rule which depends on the modified slopes of the modified ReLU function would allow us

to conduct a detailed analysis on how shaping the ReLU prevents the network from sending

inputs to highly correlated outputs.

The experiments in Chapter 3 and would be an interesting starting point for more detailed

experiments and/or theoretical explanations about training. We saw that network architec-

tures which were predicted to have highly correlated outputs tended to perform worse and

train more inconsistently than networks which better preserved the angle between inputs.

This observation combined with the simplicity and efficiency of Algorithm 1 suggests our
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prediction method may lend itself well to applications in neural architecture search.
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Appendix A

A.1 Expected Value Approximation

Lemma 4. Both the random variables X = Rℓ+1 and X = Rℓ+1 sin2(θℓ) satisfy

E[ln(X)] = ln(E[X])− Var[X]

2E[X]2
+O(n−2

ℓ ). (A.1)

Proof. First note that by the properties of the logarithm, we have

ln(X) = ln

(
E[X]

(
E[X] + (X − E[X])

E[X]

))
= ln(E[X]) + ln

(
1 +

X − E[X]

E[X]

)
. (A.2)

We can now apply the Taylor series ln(1 + x) = x − x2

2
+ ϵ2(x), where ϵ2(x) is the Taylor

series remainder and satisfies ϵ2(x) = O(x3). Hence

ln(X) = ln(E[X]) +
X − E[X]

E[X]
− (X − E[X])2

2E[X]2
+ ϵ2

(
X − E[X]

E[X]

)
.

Note that E[X − E[X]] = 0, and E[(X − E[X])2] = Var[X]. Thus, if we take the expected

value of our above approximation, we get the following:

E[ln(X)] = ln(E[X])− Var[X]

2E[X]2
+ E

[
ϵ2

(
X − E[X]

E[X]

)]
.

By using bounds on the Taylor series error term ϵ2(x) = O(x3), one can obtain bounds for

this last error term. By (2.3, 2.4), both X = Rℓ+1 and X = Rℓ+1 sin2(θℓ+1) can be expressed
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as averages of the form

X =
1

n2
ℓ

nℓ∑
i,j

f(Gi, Ĝj). (A.3)

From the bound on the 3rd moment in Lemma 7, it follows that E[ϵ2(X−E[X])] = O(n−2
ℓ ),

thus giving the desired result.

A.2 Variance Approximation

Lemma 5. Both the random variables X = Rℓ+1 and X = Rℓ+1 sin2(θℓ) satisfy

Var[ln(X)] =
Var[X]

E[X]2
+O(n−2

ℓ ).

Proof. Starting with (A.2), and using the first term of the Taylor series approximation for

ln(1 + x) = x+ ϵ1(x) now, we have that

ln(X) = ln(E[X]) +
X − E[X]

E[X]
+ ϵ1

(
X − E[X]

E[X]

)
. (A.4)

where ϵ1(x) is the Taylor error term and satisfies ϵ1(x) = O(x2). Taking the variance of this,

we arrive at an approximation of Var[ln(X)].

Var[ln(X)] = Var

[
ln(E[X]) +

X − E[X]

E[X]
+ ϵ1

(
X − E[X]

E[X]

)]
= Var

[
X − E[X]

E[X]

]
+Var

[
ϵ1

(
X − E[X]

E[X]

)]
+ 2 Cov

(
X − E[X]

E[X]
, ϵ1

(
X − E[X]

E[X]

))
.

As with the expected value approximation, this approximation for variance is used twice,

once for X = Rℓ+1, and once for X = Rℓ+1 sin2(θℓ+1) (see Section 2.2), both of which can

can be expressed as a sum as in (A.3). Since ϵ1(x) = O(x2), we have that the terms with

ϵ1(x) are both O(n−2
ℓ ) from Lemma 7. Simplifying the first term, Var

[
X−E[X]
E[X]

]
= Var[X]

E[X]2

gives the result of the Lemma.
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A.3 Covariance Approximation

Lemma 6. Both the random variables X = Rℓ+1 and Y = Rℓ+1 sin2(θℓ+1) satisfy

Cov(ln(X), ln(Y )) =
Cov(X, Y )

E[X]E[Y ]
+O(n−2

ℓ ).

Proof. Using the approximation in (A.4) for ln(X) and ln(Y ), we get the following expression

for the covariance:

Cov(ln(X), ln(Y ))

= Cov

(
ln(E[X]) +

X − E[X]

E[X]
+ ϵ1

(
X − E[X]

E[X]

)
, ln(E[Y ]) +

Y − E[Y ]

E[Y ]
+ ϵ1

(
Y − E[Y ]

E[Y ]

))
= Cov

(
X

E[X]
+ ϵ1

(
X − E[X]

E[X]

)
,

Y

E[Y ]
+ ϵ1

(
Y − E[Y ]

E[Y ]

))
= Cov

(
X

E[X]
,

Y

E[Y ]

)
+Cov

(
X

E[X]
, ϵ1

(
Y − E[Y ]

E[Y ]

))
+Cov

(
ϵ1

(
X − E[X]

E[X]

)
,

Y

E[Y ]

)
+Cov

(
ϵ1

(
X − E[X]

E[X]

)
, ϵ1

(
Y − E[Y ]

E[Y ]

))
.

We get the desired result from the fact that that the error term ϵ1(x) satisfies ϵ1(x) = O(x2)

and from our result in Lemma 8.

A.4 Third and Fourth Moment Bound Lemma

Lemma 7. Let Gi, Ĝi, 1 ≤ i ≤ n be marginally N (0, 1) random variables with correlation

cos(θ) and independent for different indices i. Let A = 1
n2

∑n
i,j f(Gi, Ĝj) be the average over

all n2 pairs of some function f : R2 → R which has finite fourth moment, E[f(Gi, Ĝj)
4] < ∞.

Then, the third and fourth central moment of A satisfy

E[(A− E[A])3] = O(n−2), E[(A− E[A])4] = O(n−2). (A.5)

Proof. We begin by showing the third moment bound. First, we can express E[(A−E[A])3]
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as a sum in the following way:

A− E[A] =
1

n2

n∑
i,j

(
f(Gi, Ĝj)− E[f(Gi, Ĝj)]

)
=⇒ E

[
(A− E[A])3

]
=

1

n6

n∑
i1,i2,i3
j1,j2,j3

E

[
3∏

k=1

(
f(Gik , Ĝjk)− E[f(Gik , Ĝjk)]

)]
. (A.6)

Note that many of these terms are mean zero. For example, for any configuration of the

indices where there is no overlap between the indices (i1, j1) and the other two index pairs

({i1, j1} ∩ {i2, j2, i3, j3} = ∅), we may use independence to observe that

E

[
3∏

k=1

(
f(Gik , Ĝjk)− E[f(Gik , Ĝjk)]

)]

=E
[
f(Gi1 , Ĝj1)− E[f(Gi1 , Ĝj1)]

]
E

[
3∏

k=2

(
f(Gik , Ĝjk)− E[f(Gik , Ĝjk)]

)]
= 0.

When this happens we say that (i1, j1) is a “reducible point”. Similarly, (i2, j2) or (i3, j3) can

be reducible if they have no overlap with the other two index pairs. To controlE [(A− E[A])3],

it will suffice to enumerate the number of indices {i1, j1, i2, j2, i3, j3} so that all three points

(i1, j1), (i2, j2), (i3, j3) are not reducible. We call these “irreducible configurations”.

We now observe that at least one of the points (i1, j1),(i2, j2) or (i3, j3) is reducible

whenever the number of unique numbers is
∣∣⋃3

k=1{ik, jk}
∣∣ ≥ 5. This is because, by the

pigeonhole principle, if there are no repeated or only one repeated number between 6 indices,

then at least one of the 3 pairs (i1, j1),(i2, j2) or (i3, j3) must consist of two unique numbers

and therefore is a reducible point.

Since the irreducible configurations can only have at most 4 unique numbers, the number

of irreducible configurations is O(n4) as n → ∞. In fact, a detailed enumeration of the

number of configurations reveals that the number of irreducible configurations is precisely

32(n)4 + 68(n)3 + 28(n)2 + 1(n)1. (A.7)

The leading term is 32 because there are 32 possible “patterns” for how the indices can be

arranged to be both irreducible and contain exactly 4 unique numbers
∣∣⋃3

k=1{ik, jk}
∣∣ = 4;

these patterns are listed in Table A.1. Each pattern contributes (n)4 = n(n−1)(n−2)(n−3)
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possible index configurations by filling in the 4 unique numbers in all the possible ways.

Similarly, there are respectively 68, 28, and 1 pattern(s) for irreducible configurations with

3,2 and 1 unique number(s) in them which each contribute (n)3, (n)2 and (n)1 configurations

per pattern (Here, (n)k denotes the falling factorial with k terms).

Since the number of irreducible configurations is O(n4), the normalization by n6 in (A.6)

shows that E[(A− E[A])3] is O(n−2) as desired for the third moment.

The argument for the 4th moment is similar. We write E[(A − E[A])4] as a sum

over i1, j1, i2, j2, i3, j3, i4, j4 and again enumerate irreducible configurations. In this case,

once again by the pigeonhole principle any configuration with 7 or more unique points∣∣⋃4
k=1{ik, jk}

∣∣ ≥ 7 will be reducible. Since there are at most 6 unique numbers, there will

be O(n6) irreducible configurations. A detailed enumeration of all the possible irreducible

patterns and the number of unique elements in each yields that the number of irreducible

configurations is precisely

48(n)6 + 544(n)5 + 1268(n)4 + 844(n)3 + 123(n)2 + 1(n)1.

The normalization factor of n−8 then shows that E[(A− E[A])4] = O(n−2).

Remark 3. A more detailed enumeration of the 4th moment actually shows that the dom-

inant terms in the 4th moment correspond to the terms in the 2nd moment written twice,

and asymptotically

E[(A− E[A])4] = 3E[(A− E[A])2]2 +O(n−3).

Here, 3 arises as the number of pair partitions of 4 items, and is related to the fact that

3 = E[G4].

Lemma 8. Let Gi, Ĝi, 1 ≤ i ≤ n be marginally N (0, 1) random variables with correla-

tion cos(θ) and independent for different indices i. Let A1 = 1
n2

∑n
i,j f1(Gi, Ĝj), and let

A2 = 1
n2

∑n
i,j f2(Gi, Ĝj), where f1, f2 : R2 → R have finite fourth moments, E[f1(Gi, Ĝj)

4],

E[f2(Gi, Ĝj)
4] < ∞. Then,

E[(A1 − E[A1])
2(A2 − E[A2])] = O

(
n−2
)
,

E[(A1 − E[A1])
2(A2 − E[A2])

2] = O
(
n−2
)
.
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Proof. We can express E[(A1 − E[A1])
2(A2 − E[A2])] using sums as follows:

E[(A1 − E[A1])
2(A2 − E[A2])]

=
1

n6

n∑
i1,i2,i3
j1,j2,j3

E

[
2∏

k=1

(
f1(Gik , Ĝjk)− E[f1(Gik , Ĝjk)]

)(
f2(Gi3 , Ĝj3)− E[f2(Gi3 , Ĝj3)]

)]
.

By the same argument as in Lemma 7, we can show that the number of nonzero terms in the

above summation is O(n4) as n → ∞. Thus, we have that E[(A1 − E[A1])
2(A2 − E[A2])] =

O(n−2). We can also show that E[(A1 − E[A1])
2(A2 − E[A2])

2] = O(n−2) by the same

arguments.

(i1, j1) (i2, j2) (i3, j3)

{(a, b), (b, a)} × {(a, c), (c, a)} × {(a, d), (d, a)} 8 patterns

{(a, b), (b, a)} × {(a, c), (c, a)} × {(c, d), (d, c)} 8 patterns

{(a, b), (b, a)} × {(c, d), (d, c)} × {(a, c), (c, a)} 8 patterns

{(a, c), (c, a)} × {(a, b), (b, a)} × {(c, d), (c, b)} 8 patterns

Table A.1: All 32 irreducible patterns using exactly 4 unique index values a, b, c, d. For
example the pattern (i1, j1), (i2, j2), (i3, j3) = (a, b), (a, c), (a, d) represents all configurations
where i1 = i2 = i3 and the j’s are all unique and different from i. For each pattern, there
are (n)4 = n(n − 1)(n − 2)(n − 3) configurations by filling in a, b, c, d with unique numbers
in [n]. These are the dominant terms in (A.6).

A.5 Expected Value Calculations

In this section, we derive the formulas for E
[
Rℓ+1

]
and E

[
Rℓ+1 sin2(θℓ+1)

]
. We use Ja,b to

represent Ja,b(θ
ℓ). Note that E[φ2(G)] = 1

2
, E[φ4(G)] = 3

2
(Proof in Lemma 1).

A.5.1 Calculation of E
[
Rℓ+1

]
First, we apply the identity as in (2.4):

E
[
Rℓ+1

]
=

(
2

nℓ

)2

E

[
nℓ∑

i,j=1

φ2(Gi)φ
2(Ĝj)

]
.
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Whenever i = j, taking the expected value will give us a J2,2 term. When i ̸= j, the expected

value of this term will be E[φ2(G)]2 = 1
4
. Since i = j happens nℓ times, and therefore i ̸= j

happens n2
ℓ − nℓ times, we arrive at the following expression:

E
[
Rℓ+1

]
=

(
2

nℓ

)2(
nℓJ2,2 + (n2

ℓ − nℓ)

(
1

4

))
=

4J2,2 − 1

nℓ

+ 1.

A.5.2 Calculation of E
[
Rℓ+1 sin2(θℓ+1)

]
Applying the identity (2.3), we get

E
[
Rℓ+1 sin2(θℓ+1)

]
=

2

n2
ℓ

E

[
nℓ∑
i,j

(
φ(Gi)φ(Ĝj)− φ(Gj)φ(Ĝi)

)2]

=
2

n2
ℓ

E

[
nℓ∑
i,j

(
φ2(Gi)φ

2(Ĝj)− 2φ(Gi)φ(Ĝi)φ(Gj)φ(Ĝj) + φ2(Gj)φ
2(Ĝi)

)]
.

In the case where i = j, the expected value is equal to 0. Thus, we only need to consider

the case where i ̸= j, which happens n2
ℓ − nℓ times. When i ̸= j, the expectation of

φ(Gi)φ(Ĝi)φ(Gj)φ(Ĝj) is J2
1,1, and the expectation of φ2(Gi)φ

2(Ĝj) is
1
4
. All together, we

have

E
[
Rℓ+1 sin2(θℓ+1)

]
=

(
2

n2
ℓ

)
(n2

ℓ − nℓ)

(
1

4
− 2J2

1,1 +
1

4

)
=

(nℓ − 1)(1− 4J2
1,1)

nℓ

.

A.6 Variance and Covariance Calculations

In this section, Var
[
Rℓ+1

]
, Var

[
Rℓ+1 sin2(θℓ+1)

]
, and Cov

(
Rℓ+1 sin2(θℓ+1), Rℓ+1

)
are eval-

uated. We use Ja,b to represent Ja,b(θ
ℓ). Note that E[φ2(G)] = 1

2
, E[φ4(G)] = 3

2
. We will

see that there are simple functions f1, f2 : R2 → R so that all of the variance and covariance

calculations can be expressed as sums over i1, j1, i2, j2 of the form

1

n4
ℓ

∑
i1,j1
i2,j2

(
E
[
f1(Gi1 , Ĝj1)f2(Gi2 , Ĝj2)

]
− E

[
f1(Gi1 , Ĝj1)

]
E
[
f2(Gi2 , Ĝj2)

])
, (A.8)

where the sum goes over index configurations (i1, j1), (i2, j2) ∈ [nℓ]
4. We will use this form to

organize our calculations of the variance and covariance formulas. The strategy is to evaluate
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each term in the sum (A.8) individually.

Since the random variables {Gi, Ĝi}ni=1 are exchangeable, the only thing that matters is

the “pattern” of which of the indices i1, j1, i2, j2 are repeated versus which are distinct. For

example, there will be n index configurations where i1 = j1 = i2 = j2 are all equal. All

n of these give same contribution. There are (n)4 = n(n − 1)(n − 2)(n − 3) configurations

where i1, j1, i2, j2 are all distinct. Knowing which indices are repeated/distinct allows us to

evaluate the corresponding term in (A.8). We use the following formal notion of a pattern

to organize this idea of repeated versus distinct indices.

Definition 3. A pattern for (i1, j1), (i2, j2) is a subset of all possible index configurations

(i1, j1), (i2, j2) ∈ [n]4 represented by an assignment of each index to the letters a, b, c, d. Each

letter a, b, c, d represents a choice of unique indices from [n].

For example, the pattern (i1, j1), (i2, j2) = (a, a), (a, a) represents the set of all index

configurations where all indices are equal and the pattern (i1, j1), (i2, j2) = (a, b), (c, d) rep-

resents the set with all indices unique. The pattern (i1, j1), (i2, j2) = (a, b), (a, c) represents

all configurations where i1 = i2 and j1, j2 are unique and different from i1 = i2. For this

pattern, there are (n)3 = n(n− 1)(n− 2) configurations by filling in a, b, c with unique num-

bers in [n]. More generally, for a pattern with k letters, there are (n)k configurations that

fall into that pattern.

Fortunately, when enumerating (A.8), many patterns have no contribution and can be

ignored. We formalize this in the following definition.

Definition 4. We say that the configuration of indices (i1, j1), (i2, j2) is reducible if {i1, j1}∩
{i2, j2} = ∅. Otherwise, the index configuration is called irreducible. A pattern is called

reducible if all index configuration in that pattern are reducible.

By the independence of the random variables f1(Gi1 , Gj1) and f2(Gi2 , Gj2), whenever

(i1, j1), (i2, j2) is reducible, we see that the corresponding term in (A.8) completely vanishes!

Therefore, to evaluate (A.8), we have only to understand the contribution of irreducible

configurations. The irreducible configurations can be organized into irreducible patterns. For

example, the pattern (a, b), (c, c) is reducible (since formally {a, b} ∩ {c} = ∅) and so any

configuration from this pattern has no contribution in the expectation.

There are 11 irreducible patterns. (All these patterns are listed as part of Table A.2.)

The expected value of the terms for each pattern will give a contribution that is expressed

in terms of the Ja,b depending on the details of exactly which indices are repeated. Then
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by enumerating the number of configurations in each pattern, we can evaluate (A.8). This

strategy is precisely how we evaluate each variance/covariance in this section.

A.6.1 Calculation of Var
[
Rℓ+1

]
First, applying the identity in (2.4), we get

Var
[
Rℓ+1

]
=

(
2

nℓ

)4

Var

[
nℓ∑

i,j=1

φ2(Gi)φ
2(Ĝj)

]

=
16

n4
ℓ

E

∑
i1,j1
i2,j2

φ2(Gi1)φ
2(Ĝj1)φ

2(Gi2)φ
2(Ĝj2)

− E

[
nℓ∑

i,j=1

φ2(Gi)φ
2(Ĝj)

]2 .

Var[Rℓ+1] follows the form of (A.8), with f1(Gi, Ĝi) = f2(Gi, Ĝi) = φ2(Gi)φ
2(Ĝj). We

then evaluate the contribution from each irreducible pattern in Table A.2. Combining all

these cases and simplifying based on powers of 1
nℓ
, we arrive at the following expression for

Var
[
Rℓ+1

]
:

4

nℓ

(J2,2 + 1) +
16

n2
ℓ

(
2J4,2 −

5

2
J2,2 + J2

2,2 +
5

8

)
+

16

n3
ℓ

(
J4,4 − 2J4,2 − 2J2

2,2 + 2J2,2 −
9

8

)
.

A.6.2 Calculation of Var
[
Rℓ+1 sin2(θℓ+1)

]
Applying identity (2.3), we can express Var[Rℓ+1 sin2(θℓ+1)] as

Var
[
Rℓ+1 sin2(θℓ+1)

]
=

1

4

(
2

nℓ

)4

Var

[
nℓ∑

i,j=1

(
φ(Gi)φ(Ĝj)− φ(Gj)φ(Ĝi)

)2]
.

Note that we can expressVar[Rℓ+1 sin2(θℓ+1)] as in (A.8) by letting f1(Gi, Ĝj) = f2(Gi, Ĝj) =

(φ(Gi)φ(Ĝj)−φ(Gj)φ(Ĝi))
2.We then evaluate the contribution from each irreducible pattern

in Table A.3. Combining all these cases and simplifying based on powers of 1
nℓ
, we arrive at
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Var[Rℓ+1] Calculation

# (i1, j1) (i2, j2) E[f1(Gi1 , Ĝj1)] E[f2(Gi2 , Ĝj2)] E[f1(Gi1 , Ĝj1)f2(Gi2 , Ĝj2)]

(n)1 (a, a) (a, a) J2,2 J2,2 J4,4

(n)2

(a, b) (a, b) (
1
2

)2 (
1
2

)2 (
3
2

)2
(a, b) (b, a) J2

2,2

(a, a) (a, b)
J2,2

(
1
2

)2
1
2
J4,2

(a, a) (b, a)

(a, b) (a, a) (
1
2

)2
J2,2

(b, a) (a, a)

(n)3

(a, b) (a, c)

(
1
2

)2 (
1
2

)2 3
2

(
1
2

)2
(a, b) (c, b)

(a, b) (c, a) (
1
2

)2
J2,2

(a, b) (b, c)

Table A.2: Var[Rℓ+1] calculated in the form of (A.8) with f1(Gi, Ĝj) = f2(Gi, Ĝj) =

φ2(Gi)φ
2(Ĝj). The contribution from all 11 possible irreducible patterns of the indices

are shown.

the following expression:

Var
[
Rℓ+1 sin2(θℓ+1)

]
=

8

nℓ

(
−8J4

1,1 + 8J2
1,1J2,2 + 4J2

1,1 − 8J1,1J3,1 + J2,2 + 1
)

+
2

n2
ℓ

(
80J4

1,1 − 96J2
1,1J2,2 − 40J2

1,1 + 96J1,1J3,1 + 24J2
2,2 − 12J2,2 − 32J2

3,1 + 5
)

+
2

n3
ℓ

(
−48J4

1,1 + 64J2
1,1J2,2 + 24J2

1,1 − 64J1,1J3,1 − 24J2
2,2 + 8J2,2 + 32J2

3,1 − 9
)
.

A.6.3 Calculation of Cov
(
Rℓ+1 sin2(θℓ+1), Rℓ+1

)
Cov

(
Rℓ+1 sin2(θℓ+1), Rℓ+1

)
= E

[(
Rℓ+1

)2
sin2(θℓ+1)

]
− E

[
Rℓ+1 sin2(θℓ+1)

]
E
[
Rℓ+1

]
.

Applying known identities (2.3, 2.4) derived in Appendices A.7 and A.8, we can express this
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Var[Rℓ+1 sin2(θℓ+1)] Calculation

# (i1, j1) (i2, j2) E[f(Gi1 , Ĝj1)] E[f(Gi2 , Ĝj2)] E[f(Gi1 , Ĝj1)f(Gi2 , Ĝj2)]

(n)2
(a, b) (a, b)

1
2
− 2J2

1,1
1
2
− 2J2

1,1

6J2
2,2 − 8J2

3,1 +
9
2

(a, b) (b, a)

(n)3

(a, b) (a, c)

4J2,2J
2
1,1 − 4J3,1J1,1 +

1
2
J2,2 +

3
4

(a, b) (c, a)

(a, b) (c, b)

(a, b) (b, c)

Table A.3: Var[Rℓ+1 sin2(θℓ+1)] calculated in the form of (A.8) with f1(Gi, Ĝj) = f2(Gi, Ĝj)

= (φ(Gi)φ(Ĝj)−φ(Gj)φ(Ĝi))
2. The non-zero contribution irreducible patterns of the indices

are shown. Note that because f1(Gi1 , Gj1) = 0 when i1 = j1 and f2(Gi2 , Gj2) = 0 when
i2 = j2, there are 5 irreducible patterns (of the possible 11) that have zero contribution and
are not displayed in this table.

in the form of (A.8), where f1(Gi, Ĝj) = (φ(Gi)φ(Ĝj) − φ(Gj)φ(Ĝi))
2, and f2(Gi, Ĝj) =

φ2(Gi)φ
2(Ĝj). Table A.4 shows the calculation of all the irreducible patterns. Collecting all

cases and simplifying based on powers of 1
nℓ

gives:

Cov
(
Rℓ+1 sin2(θℓ+1), Rℓ+1

)
=

1

nℓ

(
16J2

1,1 − 32J1,1J3,1 + 8J2,2 + 8
)

+
1

n2
ℓ

(
32J2

1,1J2,2 − 40J2
1,1 + 96J1,1J3,1 − 32J1,1J3,3 + 16J2

2,2 − 32J2,2 − 32J2
3,1 + 16J4,2 + 10

)
+

1

n3
ℓ

(
24J2

1,1 − 32J2
1,1J2,2 − 64J1,1J3,1 + 32J1,1J3,3 − 16J2

2,2 + 24J2,2 + 32J2
3,1 − 16J4,2 − 18

)
.

A.7 Derivation of Useful Identities - Equations 2.1, 2.2

Let G ∈ Rn be a Gaussian vector with iid entries Gi ∼ N (0, 1). Then, by standard properties

of Gaussians, the function f : Rn → R given by f(x) = ⟨G, x⟩ is a Gaussian random variable.

Further, f(x) ∼ N (0, ∥x∥2) for all x ∈ Rn, and for any two vectors xα, xβ ∈ Rn, the joint
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Cov(Rℓ+1, Rℓ+1 sin2(θℓ+1)) Calculation

# (i1, j1) (i2, j2) E[f1(Gi1 , Ĝj1)] E[f2(Gi2 , Ĝj2)] E[f1(Gi1 , Ĝj1)f2(Gi2 , Ĝj2)]

(n)2

(a, b) (b, b)

1
2
− 2J2

1,1

J2,2 J4,2 − 2J1,1J3,3
(a, b) (a, a)

(a, b) (a, b)

(
1
2

)2
J2
2,2 − 2J2

3,1 +
(
3
2

)2
(a, b) (b, a)

(n)3

(a, b) (a, c)

(a, b) (c, a)

(a, b) (b, c)

(a, b) (c, b)

Table A.4: Cov
(
Rℓ+1 sin2(θℓ+1), Rℓ+1

)
calculated in the form of (A.8) with f1(Gi, Ĝj) =

(φ(Gi)φ(Ĝj) − φ(Gj)φ(Ĝi))
2, and f2(Gi, Ĝj) = φ2(Gi)φ

2(Ĝj). The non-zero contribution
from irreducible patterns of the indices are shown. Note that because f1(Gi1 , Gj1) = 0 when
i1 = j1, there are 3 irreducible patterns (of the possible 11) that have zero contribution
which are not displayed in this table.

distribution of f(xα), f(xβ) is jointly Gaussian withf(xα)

f(xβ)

 ∼ N (0,Σ(xα, xβ)) , Σ(xα, xβ) :=

 ∥xα∥2 ⟨xα, xβ⟩

⟨xα, xβ⟩ ∥xβ∥2

 ,

where Σ(xα, xβ) is sometimes called the 2× 2 Gram matrix of the vectors xα, xβ.

In the setting of our fully connected neural network, any index i ∈ [nℓ+1] in the vector of

zℓ+1 is actually the inner product of φ(zℓ(x)) with the i-th row of the weight matrix W ℓ+1:

zℓ+1
i (x) =

√
2

nℓ

⟨W ℓ+1
i,· , φ(zℓ(x))⟩.

Note that each row W ℓ+1
i,· is a Gaussian vector, so the previous fact about Gaussians applies

and we see that the entries of zℓ+1 are conditionally Gaussian given the value of the previous

layer. By the previous Gaussian fact, we have that zℓ+1
i (xα), z

ℓ+1
i (xβ) are jointly Gaussian
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with zℓ+1
i (xα)

zℓ+1
i (xβ)

 ∼ N

0,
2

nℓ

 ∥φℓ
α∥2 ⟨φℓ

α, φ
ℓ
β⟩

⟨φℓ
α, φ

ℓ
β⟩ ∥φℓ

β∥2


 =: N

(
0, Kℓ

)
,

where we use Kℓ to denote the 2×2 covariance matrix. Kℓ is precisely the 2×2 Gram matrix

of the previous layer φℓ
α, φ

ℓ
β scaled by 2/nℓ and its entries Kℓ

i,j, for i ∈ {α, β}, j ∈ {α, β} are

actually averages of entries in the previous layer

Kℓ
i,j :=

2

nℓ

⟨φℓ
i , φ

ℓ
j⟩ =

1

nℓ

nℓ∑
k=1

2φ(zℓk(xi))φ(z
ℓ
k(xj)).

Moreover, in the weight matrix W ℓ+1, the ith and jth rows (W ℓ+1
i,· and W ℓ+1

j,· , respectively)

are independent. Therefore, all entries of zℓ+1 are identically distributed and conditionally

independent given φ(zℓ). From this fact, we can equivalently write the entries explicitly as

zℓ+1
i (xα) =

√
2

nℓ

∥φℓ
α∥Gi, zℓ+1

i (xβ) =

√
2

nℓ

∥φℓ
β∥Ĝi, (A.9)

where Gi, Ĝi are marginally N (0, 1) variables with covariance Cov(Gi, Ĝi) = cos(θℓ) and

independent for different indices. This formulation precisely ensures that the covariance

structure for the entries is exactly what is specified by the covariance kernel Kℓ.

With this representation of zℓ+1
i (xα) and zℓ+1

i (xβ), we can apply φ(·) to each entry. By

using the property of ReLU φ(λx) = λφ(x) for λ > 0 to factor out the norms, we obtain

φ(zℓ+1
i (xα)) =

√
2

nℓ

∥φℓ
α∥φ(Gi), φ(zℓ+1

i (xβ)) =

√
2

nℓ

∥φℓ
β∥φ(Ĝi). (A.10)

Taking the norm/inner product of the vector now yields (2.1-2.3) as desired.
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A.8 Cauchy-Binet and Determinant of the Gram Ma-

trix - Equation 2.3

To prove this identity, we begin with the fact that

∥φℓ+1
α ∥2∥φℓ+1

β ∥2sin2(θℓ+1) = det

 ∥φℓ+1
α ∥2 ⟨φℓ+1

α , φℓ+1
β ⟩

⟨φℓ+1
α , φℓ+1

β ⟩ ∥φℓ+1
β ∥2

 .

By the Cauchy-Binet identity, we can express the determinant as

det

 ∥φℓ+1
α ∥2 ⟨φℓ+1

α , φℓ+1
β ⟩

⟨φℓ+1
α , φℓ+1

β ⟩ ∥φℓ+1
β ∥2

 =
∑

1≤i<j≤nℓ

(
φℓ+1
i;α φℓ+1

j;β − φℓ+1
j;α φℓ+1

i;β

)2
. (A.11)

Due to the fact that the summand is equal to 0 when i = j, we can equivalently take the

sum over all indices i, j ∈ [nℓ] and halve the result. We can also express layer ℓ + 1 using

the following conditioning on the previous layer

φℓ+1
i;α =

√
2

nℓ

∥φℓ
α∥·φ(Gi), φℓ+1

i;β =

√
2

nℓ

∥φℓ
β∥·φ(Ĝi).

Applying these facts to our expression in (A.11), and dividing both sides by ∥φℓ
α∥2∥φℓ

β∥2, we
get our desired result.

A.9 Infinite Width Update Rule

Lemma 9. Let f(x) be a feed forward neural network as defined in 2.1. Conditional on

the value of θℓ in layer ℓ, the angle θℓ between inputs at layer ℓ of f follows the following

deterministic update rule in the limit nℓ → ∞.

cos(θℓ+1) = 2J1,1(θ
ℓ).

Remark 4. Note that a more general proof of this result appears in prior work [11] which

allows one to take the layer sizes n1, n2, . . . , nℓ → ∞ in any order, rather than one layer at

a time as we prove here.

51



Proof. We begin with the identity (2.2), and use the inner product to introduce cos(θℓ+1),

∥φℓ
α∥∥φℓ

β∥
nℓ

nℓ∑
i=1

2φ(Gi)φ(Ĝi) = ⟨φℓ+1
α , φℓ+1

β ⟩ = ∥φℓ+1
α ∥∥φℓ+1

β ∥cos(θℓ+1).

Applying the identities in (2.1) to ∥φℓ+1
α ∥ and ∥φℓ+1

β ∥, we get

∥φℓ
α∥∥φℓ

β∥
nℓ

nℓ∑
i=1

2φ(Gi)φ(Ĝi) =

√√√√∥φℓ
α∥2
nℓ

nℓ∑
i=1

2φ2(Gi)

√√√√∥φℓ
β∥2

nℓ

nℓ∑
i=1

2φ2(Ĝi) cos(θ
ℓ+1),

=⇒ 1

nℓ

nℓ∑
i=1

φ(Gi)φ(Ĝi) =

√√√√ 1

nℓ

nℓ∑
i=1

φ2(Gi)

√√√√ 1

nℓ

nℓ∑
i=1

φ2(Ĝi) cos(θ
ℓ+1).

Now, in the limit nℓ → ∞ we have by application of the Law of Large Numbers,

lim
nℓ→∞

(
1

nℓ

nℓ∑
i=1

φ(Gi)φ(Ĝi)

)
= lim

nℓ→∞

√√√√ 1

nℓ

nℓ∑
i=1

φ2(Gi)

√√√√ 1

nℓ

nℓ∑
i=1

φ2(Ĝi) cos(θ
ℓ+1)


=⇒ E

[
φ(Gi)φ(Ĝi)

]
=
√
E [φ2(Gi)]

√
E[φ2(Ĝi)] cos(θ

ℓ+1)

=⇒ J1,1(θ
ℓ) =

1

2
cos(θℓ+1),

where we have used the definition of J1,1(θ) and the fact that E[φ2(G)] = 1
2
.
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Appendix B

B.1 Derivation of Lower-Order J Functions - Proof of

Proposition 2

Proof of Formula for J0,0. We find a differential equation that J0,0 satisfies and solve it to

obtain the formula. First note the initial condition J0,0(0) = E[1{G > 0}] = 1
2
. To find

J ′
0,0(θ), we take the derivative inside the expectation and have by the chain rule that

J ′
0,0(θ) = E[1{G > 0}1′{G cos θ +W sin θ > 0}G](− sin θ)

+ E[1{G > 0}1′{G cos θ +W sin θ > 0}W ] cos θ.

Applying the change of variables as in (4.11), we have

J ′
0,0(θ) = E[(Z cos θ + Y sin θ)1{Z cos θ + Y sin θ > 0}1′{Z > 0}](− sin θ)

+ E[(Z sin θ − Y cos θ)1{Z cos θ + Y sin θ > 0}1′{Z > 0}] cos θ

= E[(Y sin θ)1{Y sin θ > 0}]− sin θ√
2π

+ E[(−Y cos θ)1{Y sin θ > 0}]cos θ√
2π

= (− sin2 θ − cos2 θ)E[Y 1{Y > 0}] 1√
2π

= − 1

2π
,

where we have used (4.8) to evaluate the integrals involving 1′{Z > 0} and E[Y 1{Y >

0}] = (
√
2π)−1 from Lemma 1. We now have J ′

0,0(θ) = − 1
2π

with initial condition given by

J0,0(0) =
1
2
. Solving this differential equation gives the desired result.
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Proof of Formula for J1,0. Here we use the Gaussian integration-by-parts strategy (4.7 -4.8).

J1,0(θ) = E[G1{G > 0} 1{G cos θ +W sin θ > 0}]

= E

[
d

dg
( 1{G > 0} 1{G cos θ +W sin θ > 0})

]
= E [1′{G > 0} 1{G cos θ +W sin θ > 0}] + E [1{G > 0} 1′{G cos θ +W sin θ > 0}] cos θ.

By using the change of variables as in (4.11) on the second term, we arrive at

J1,0(θ) = E[1{W sin θ > 0}] 1√
2π

+ cos θE[1{Z cos θ + Y sin θ > 0}1′{Z > 0}]

=
1

2

1√
2π

+ cos θE[1{Y sin θ > 0}] 1√
2π

=
1

2

1√
2π

+
cos θ

2

1√
2π

=
1 + cos θ

2
√
2π

.

Proof of Formula for J1,1:

J1,1(θ) = E[G(G cos θ +W sin θ)1{G > 0}1{G cos θ +W sin θ > 0}]

= E[cos θ 1{G > 0}1{G cos θ +W sin θ > 0}]

+ E[(G cos θ +W sin θ)1′{G > 0}1{G cos θ +W sin θ > 0}]

+ E[(G cos θ +W sin θ)1{G > 0}1′{G cos θ +W sin θ > 0}] cos θ

= cos θJ0,0 + E[W sin θ 1{W sin θ > 0}] 1√
2π

+ E[Z1{Z cos θ + Y sin θ}1′{z > 0}]

= cos θJ0,0 + sin θE[φ(W )]
1√
2π

+ 0 =
sin θ + (π − θ) cos θ

2π
.

B.2 Proof of Explicit Formulas for Jn,0 and Jn,1

Once the recursion is established, the formula for both Jn,0 and Jn,1 is a simple proof by

induction.

Lemma 10. Let Jrec
n,0 be the recursively defined formula, and let Jexp

n,0 be the explicitly defined
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formula for Jn,0, namely

Jrec
n,0 := (n− 1)Jrec

n−2,0 +
sinn−1 θ cos θ

cn mod 2

(n− 2)! ! , Jrec
1,0 := J1,0, Jrec

0,0 := J0,0,

Jexp
n,0 := (n− 1)! !

Jn mod 2,0 +
cos θ

cn mod 2

∑
i ̸≡n( mod 2)

0<i<n

(i− 1)! !

i! !
sini θ

 .

Then, Jrec
n,0 = Jexp

n,0 for all n ≥ 0.

Proof. Let Sn, n ∈ N, n ≥ 2 be the statement Jrec
n,0 = Jexp

n,0 and Jrec
n−1,0 = Jexp

n−1,0. We prove Sn

is true by induction. The base case S2 is true because,

Jrec
2,0 = (2− 1)J0,0 +

sin θ cos θ

c2 mod 2

(2− 2)! ! = J0,0 +
cos θ sin θ

2π
,

Jexp
2,0 = (2− 1)! ! J0,0 + cos θ

1∑
i=1

(2− 1)! !

(2i− 1)! !
(2i− 2)! !

sin2i−1 θ

2π
= J0,0 +

cos θ sin θ

2π
,

and the fact that Jrec
1,0 = Jexp

1,0 is trivial. Induction step: Assume Sn is true. To prove Sn+1,

we have only to show that Jexp
n+1,0 = Jrec

n+1,0. To do this, we separate the last term of the sum

to get

Jexp
n+1,0 = n! !

J(n+1) mod 2,0 +
cos θ

c(n+1) mod 2

∑
i ̸≡(n+1)( mod 2)

0<i<n−1

(i− 1)! !

i! !
sini θ


+ n! !

cos θ

c(n+1) mod 2

(n− 1)! !

n! !
sinn θ.

Because the parity of n+1 and n− 1 are the same, and using n! ! = n(n− 2)! ! we recognize

the first term as nJexp
n−1,0. So after simplifying the last term, we remain with

Jexp
n+1,0 = nJexp

n−1,0 +
sinn θ cos θ

c(n+1) mod 2

(n− 1)! ! = Jrec
n+1,0,

by the induction hypothesis. This completes the induction.

Lemma 11. Let Jrec
n,1 be the recursively defined formula, and let Jexp

n,1 be the explicitly defined
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formula for Jn,1, which is given by

Jexp
n,1 (θ) = (n− 1)! !

Jn mod 2,1 + cos θ
∑

i ̸≡n( mod 2)
0<i<n

Ji,0(θ)

i! !

 ,

Jrec
n,1 = (n− 1)Jn−2,1 + cos θJn−1,0, Jrec

0,1 := J0,1, Jrec
1,1 := J1,1.

Then, Jrec
n,1 = Jexp

n,1 for all n ≥ 0.

Proof. Let Sn, n ∈ N, n ≥ 2 be the statement Jrec
n,1 = Jexp

n,1 . We show that the base case S2

is true.

Jrec
2,1 = (2− 1)J0,1 + cos θJ1,0 = (1 + cos θ)J1,0 =

(1 + cos θ)2

2
√
2π

,

Jexp
2,1 = (2− 1)! !

J2 mod 2,1 + cos θ
∑

i ̸≡2( mod 2)
0<i<2

Ji,0
i! !

 = J0,1 + cos θ
J1,0
1! !

=
(1 + cos θ)2

2
√
2π

.

Under the assumption that Sn is true, we show that Sn+1 is also true.

Jexp
n+1,1 = n! !

J(n+1) mod 2,1 + cos θ
∑

i ̸≡(n+1)( mod 2)
0<i<n+1

Ji,0
i! !



= n! !

J(n+1) mod 2,1 + cos θ
∑

i ̸≡(n+1)( mod 2)
0<i<n−1

Ji,0
i! !

+ n! ! cos θ
Jn,0
n! !

= n(n− 2)! !

J(n−1) mod 2,1 + cos θ
∑

i ̸≡(n−1)( mod 2)
0<i<n−1

Ji,0
i! !

+ cos θJn,0

= nJn−1,1 + cos θJn,0

= Jrec
n+1,1.
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B.3 Bijection between Paths in Graphs of J Functions

and the Bessel Number Graphs P ,Q

Let GJ∗ = (VJ∗, EJ∗) be the graph of J∗
a,b as in Figure 4.2c. Similarly, let GP = (VP , EP ) and

GQ = (VQ, EQ) be the graph of the P and Q matrices up to row a, respectively, as in Figures

4.2a, 4.2b. We define a map λ : Z2 × Z2 → Z2 as follows: Let ((i, j), (m,n)) ∈ Z2 × Z2, 0 ≤
i ≤ a, b− a+m ≤ j ≤ b. Then define λ by

λ((i, j), (m,n)) := (i−m, j − n), λ−1((i, j), (m,n)) = (i+m, j + n).

The function λ can be used as a map between vertices of graph GJ∗ to vertices of graph

GP or GQ. Let π = (v1, v2, ..., vk−1, vk) be a path in GJ∗ from vertex v1 = (m,n) to vertex

vk = (a, b), where vi ∈ Z2, 1 ≤ i ≤ k is a vertex on the graph. λ extends to a map on paths,

Λ, defined by

Λ((v1, v2, ..., vk−1, vk)) :=(λ(v1, v1), λ(v2, v1), ..., λ(vk−1, v1), λ(vk, v1)),

Λ−1((v1, v2, ..., vk−1, vk)) =(λ−1(v1, v1), λ
−1(v2, v1), ..., λ

−1(vk−1, v1), λ
−1(vk, v1)).

Now, let ΓJ∗(a, b,m, n) be the set of all paths in the graph of J∗ from J∗
m,n to J∗

a,b, and let

ΓP (a, b,m, n) be the set of all paths in the graph of P from P (0, 0) to P (a − m, b − n) =

P (λ((a, b), (m,n))). For example, ΓJ∗(6, 8, 0, 4) is the set of all paths which run from J∗
6,8 to

J∗
0,4, and ΓP (6, 8, 0, 4) is the set of all paths which run from P (0, 0) to P (6, 4).

With these definitions, Λ : ΓJ∗(a, b, 0, n) → ΓP (a, b, 0, n) is a bijection. An illustration

of all paths π ∈ Π(6, 8, 0, 6) and the corresponding paths Λ(π) ∈ ΓP (6, 8, 0, 6) is given

in Figure B.1. Similarly, if we let ΓQ(a, b,m, n) be the set of all paths from Q(0, 0) to

Q(a −m, b − n) = Q(λ((a, b), (m,n))) then Λ : ΓJ∗(a, b, 1, n) → ΓQ(a, b, 1, n) is a bijection

(see Figure B.2 for an illustration). This bijection establishes the equality of the weighted

paths claim in (4.21).
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Figure B.1: Top: All paths π ∈ ΓJ∗(6, 8, 0, 6). Bottom: All paths Λ(π) ∈ ΓP (6, 8, 0, 6). The
paths are lined up so that for each path π in the top row, Λ(π) appears in the bottom row.
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Figure B.2: Top: All paths π ∈ ΓJ∗(6, 8, 1, 7). Bottom: All paths Λ(π) ∈ ΓQ(6, 8, 1, 7). The
paths are lined up so that for each path π in the top row, Λ(π) appears in the bottom row.
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Appendix C

C.1 P and Q numbers

The P and Q numbers were introduced in [16] and can also be thought of as infinite matrices

with elements in the ath row and bth column given by P (a, b) and Q(a, b), respectively.

P =



0 1 2 3 4 5 6

0 1 0 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 0 · · ·
2 1 0 1 0 0 0 0 · · ·
3 0 3 0 1 0 0 0 · · ·
4 3 0 6 0 1 0 0 · · ·
5 0 15 0 10 0 1 0 · · ·
6 15 0 45 0 15 0 1 · · ·

...
...

...
...

...
...

...
. . .


Q =



0 1 2 3 4 5 6

0 1 0 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 0 · · ·
2 2 0 1 0 0 0 0 · · ·
3 0 5 0 1 0 0 0 · · ·
4 8 0 9 0 1 0 0 · · ·
5 0 33 0 14 0 1 0 · · ·
6 48 0 87 0 20 0 1 · · ·

...
...

...
...

...
...

...
. . .


(C.1)

C.2 Recursions for the P and Q numbers - Proof of

Lemma 3

Earlier work established the following properties of the P and Q numbers.
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Theorem 3 (Kreinin [16]). The elements of the matrices P and Q satisfy

b · P (a, b) = a · P (a− 1, b− 1), a ≥ 1, 1 ≤ b ≤ a, (C.2)

P (a+ 1, b) = P (a, b− 1) + (b+ 1) · P (a, b+ 1), a ≥ 0, 1 ≤ b ≤ a, (C.3)

Q(a, b) = P (a, b) + (b+ 1) ·Q(a− 1, b+ 1), a ≥ 1, 1 ≤ b ≤ a, (C.4)

Q(a, b) = a ·Q(a− 2, b) +Q(a− 1, b− 1), a ≥ 2, 1 ≤ b ≤ a. (C.5)

Of Lemma 3. Equation (C.3) tells us that P (a, b) = P (a− 1, b− 1)+ (b+1) ·P (a− 1, b+1)

for a ≥ 1, 1 ≤ b ≤ a−1, while equation (C.2) tells us that P (a−1, b+1) = (a−1)
(b+1)

·P (a−2, b)

for a ≥ 2, 0 ≤ b ≤ a − 2. Putting these together, we get the following recurrence equation

for P (a, b):

P (a, b) = P (a− 1, b− 1) + (b+ 1)

(
(a− 1)

(b+ 1)
· P (a− 2, b)

)
= (a− 1) · P (a− 2, b) + P (a− 1, b− 1),

which holds for a ≥ 3, 1 ≤ b ≤ a − 2. Further, looking at equation (C.5), we see that the

recursion for the Q numbers is very similar to that of the P numbers, but with a coefficient

of a rather than (a− 1). This establishes Lemma 3.
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Appendix D

This section details the architectures of the 45 different neural networks used to produce

Figure 3.1.

# Depth
Avg. # Parameters Avg. Test Accuracy ± Standard Deviation
Width (F)MNIST CIFAR MNIST FMNIST CIFAR

1 2 50 58880 165790 0.924 ± 0.007 0.79 ± 0.02 0.211 ± 0.029
2 2 85 57350 135510 0.837 ± 0.051 0.709 ± 0.028 0.276 ± 0.011
3 2 200 19930 54250 0.878 ± 0.009 0.721 ± 0.098 0.163 ± 0.048
4 2 25 138300 201600 0.94 ± 0.004 0.812 ± 0.009 0.229 ± 0.025
5 2 125 31725 88925 0.89 ± 0.005 0.768 ± 0.013 0.199 ± 0.027
6 3 25 43990 114550 0.928 ± 0.008 0.812 ± 0.013 0.167 ± 0.022
7 3 50 62830 173280 0.916 ± 0.002 0.79 ± 0.012 0.224 ± 0.019
8 3 100 59700 96756 0.952 ± 0.004 0.839 ± 0.003 0.27 ± 0.016
9 3 67.67 87200 309900 0.924 ± 0.006 0.799 ± 0.011 0.281 ± 0.011
10 3 50 17310 189100 0.553 ± 0.181 0.599 ± 0.119 0.263 ± 0.022
11 4 30 369400 366150 0.877 ± 0.052 0.757 ± 0.026 0.192 ± 0.029
12 4 75 99400 105060 0.957 ± 0.003 0.842 ± 0.006 0.23 ± 0.025
13 5 21 74700 51630 0.931 ± 0.005 0.811 ± 0.009 0.146 ± 0.029
14 6 55 8840 976400 0.715 ± 0.088 0.569 ± 0.146 0.337 ± 0.008
15 6 87.5 169400 398200 0.949 ± 0.008 0.833 ± 0.007 0.332 ± 0.018
16 10 10 79020 180010 0.951 ± 0.003 0.832 ± 0.01 0.278 ± 0.018
17 10 100 64850 122050 0.939 ± 0.004 0.824 ± 0.008 0.262 ± 0.059
18 10 200 54170 262060 0.933 ± 0.005 0.81 ± 0.014 0.335 ± 0.016
19 10 17.5 49920 1002300 0.794 ± 0.052 0.648 ± 0.106 0.184 ± 0.026
20 11 34.55 518800 31720 0.955 ± 0.006 0.835 ± 0.011 0.14 ± 0.037

Table D.1: Summary of the architectures of the first 20 neural networks used in Figure 3.1,
as well as their performance on the test datasets. Note that the number of parameters differs
between the (F)MNIST and CIFAR-10 datasets due to the fact that CIFAR-10 images are in
colour requiring 3 colour channels, while the MNIST and FMNIST images are in grayscale.
This table is continued in Table D.2.
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# Depth
Avg. # Parameters Average Score ± Standard Deviation
Width (F)MNIST CIFAR MNIST FMNIST CIFAR

21 11 35 21100 269195 0.93 ± 0.005 0.823 ± 0.007 0.363 ± 0.016
22 13 42 36420 328200 0.91 ± 0.008 0.789 ± 0.01 0.364 ± 0.016
23 15 30 41844 174100 0.92 ± 0.004 0.805 ± 0.011 0.349 ± 0.015
24 15 50 13860 235650 0.909 ± 0.005 0.8 ± 0.012 0.328 ± 0.02
25 15 75 16580 206848 0.927 ± 0.003 0.823 ± 0.007 0.359 ± 0.009
26 16 35 42200 159100 0.943 ± 0.004 0.838 ± 0.004 0.343 ± 0.021
27 16 22.5 198800 656400 0.963 ± 0.003 0.845 ± 0.01 0.37 ± 0.016
28 20 25 94900 323700 0.955 ± 0.002 0.843 ± 0.006 0.367 ± 0.006
29 20 50 60416 62340 0.951 ± 0.003 0.837 ± 0.005 0.163 ± 0.058
30 20 37.5 44700 156600 0.948 ± 0.003 0.834 ± 0.008 0.346 ± 0.028
31 23 31.30 194550 598200 0.927 ± 0.005 0.788 ± 0.008 0.17 ± 0.004
32 25 15 64050 48180 0.951 ± 0.002 0.84 ± 0.004 0.186 ± 0.071
33 25 75 55160 125880 0.899 ± 0.014 0.748 ± 0.033 0.274 ± 0.048
34 25 150 53760 64390 0.782 ± 0.077 0.676 ± 0.064 0.206 ± 0.041
35 28 35.71 74715 78300 0.953 ± 0.001 0.844 ± 0.001 0.244 ± 0.075
36 30 15 60860 152380 0.819 ± 0.08 0.719 ± 0.033 0.17 ± 0.02
37 30 30 18630 145280 0.862 ± 0.08 0.772 ± 0.017 0.168 ± 0.02
38 30 100 34360 146680 0.941 ± 0.003 0.826 ± 0.009 0.165 ± 0.022
39 30 26.67 659100 118560 0.932 ± 0.014 0.785 ± 0.011 0.175 ± 0.007
40 30 31.67 18435 52755 0.313 ± 0.131 0.349 ± 0.109 0.158 ± 0.026
41 35 40 86160 276600 0.753 ± 0.074 0.586 ± 0.11 0.148 ± 0.029
42 35 75 250800 450525 0.725 ± 0.163 0.608 ± 0.077 0.165 ± 0.007
43 40 50 137200 251600 0.522 ± 0.141 0.513 ± 0.089 0.167 ± 0.007
44 40 75 278925 422400 0.467 ± 0.123 0.466 ± 0.09 0.161 ± 0.022
45 50 50 162200 177680 0.242 ± 0.064 0.22 ± 0.042 0.161 ± 0.019

Table D.2: Continuation of Table D.1 for networks 21 through 45.
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# Hidden Layer Widths
1 50, 50
2 85, 85
3 200, 200
4 20, 30
5 100, 150
6 25, 25, 25
7 50, 50, 50
8 100, 100, 100
9 64, 75, 64
10 75, 50, 25
11 40, 40, 20, 20
12 50, 100, 100, 50
13 15, 15, 15, 30, 30
14 80, 70, 60, 50, 40, 30
15 25, 50, 75, 100, 125, 150
16 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
17 100, 100, 100, 100, 100, 100, 100, 100, 100, 100
18 200, 200, 200, 200, 200, 200, 200, 200, 200, 200
19 20, 20, 20, 20, 20, 15, 15, 15, 15, 15
20 55, 30, 30, 30, 30, 30, 30, 30, 30, 30, 55
21 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30
22 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60
23 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30
24 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
25 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

Table D.3: Ordered list of hidden layer widths for the first 25 networks used in Figure 3.1.
This table is continued in Table D.4.
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# Hidden Layer Widths
26 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20
27 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
28 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
29 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
30 45, 45, 45, 45, 45, 40, 40, 40, 40, 40, 35, 35, 35, 35, 35, 30, 30, 30, 30, 30
31 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
32 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

15, 15
33 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75,

75, 75
34 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150,

150, 150, 150, 150, 150, 150, 150, 150
35 25, 25, 25, 25, 50, 50, 50, 50, 25, 25, 25, 25, 50, 50, 50, 50, 25, 25, 25, 25, 50, 50, 50,

50, 25, 25, 25, 25
36 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

15, 15, 15, 15, 15, 15, 15
37 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,

30, 30, 30, 30, 30, 30, 30
38 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100
39 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 40, 40, 40, 40, 40
40 40, 40, 40, 40, 40, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,

30, 30, 30, 30, 30, 30, 30
41 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,

40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
42 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75,

75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75
43 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
44 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75,

75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75
45 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50

Table D.4: Continuation of Table D.3 for networks 26 through 45.
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